DIRAC pam run in /public/home/ymyu/yym/MRCC/Be ** interface to 64-bit integer MPI enabled ** DIRAC master (comput44) starts by allocating 4096000000 words ( 31250 MB) of memory DIRAC master (comput44) has no limitations in place for the amount of dynamically allocated memory Note: maximum allocatable memory for master+nodes can be set by -aw flag (MW) in pam ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast KTH/PDC Stockholm Sweden * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Artic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Jon K. Laerdahl University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC14 (2014), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, Y. S. Lee, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, * * J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, * * K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, * * and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Binary information ------------------ Who compiled | ymyu Host | admin1 System | Linux-3.10.0-693.el7.x86_64 CMake generator | Unix Makefiles Processor | x86_64 64-bit integers | ON MPI | ON Fortran compiler | /public/home/ymyu/soft/openmpi-Bianry/bin/mpif90 Fortran compiler version | ifort (IFORT) 17.0.5 20170817 C compiler | /public/home/ymyu/soft/openmpi-Bianry/bin/mpicc C compiler version | icc (ICC) 17.0.5 20170817 C++ compiler | /usr/bin/g++ C++ compiler version | g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-16) Static linking | OFF Last Git revision | 1eca931be53f527aadc9f96bbde1203b0b998448 Configuration time | 2019-03-04 16:37:20.429834 Execution time and host ----------------------- Date and time (Linux) : Wed Jul 15 13:13:33 2020 Host name : comput44 Contents of the input file -------------------------- ! **DIRAC .TITLE Be DHF test calculations. .WAVE F .PROPERTIES .4INDEX .ANALYZE **ANALYZE .MULPOP *MULPOP .VECPOP 1..20 ################################# **HAMILTONIAN .DOSSSS **INTEGRALS *READIN .UNCONTRACT **WAVE FUNCTIONS .SCF *SCF .CLOSED SHELL 4 .EVCCNV 1.0E-10 1.0E-7 .CNVINT 0.01 0.0001 **MOLTRA .ACTIVE energy -20000. 20 0.01 *END OF Contents of the molecule file ----------------------------- INTGRL Be DHF Basis from dalton C 1 1 2 Y X 4. 1 Be .0000000000 0.0000000000 0.0000000000 LARGE BASIS aug-cc-pCVDZ FINISH ************************************************************************* *********************** Be DHF test calculations. *********************** ************************************************************************* Jobs in this run: * Wave function * Analysis * Properties * Transformation to Molecular Spinor basis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in four-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals - SL-integrals - SS-integrals - GT-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for READIN: ------------------------------- Uncontracted basis forced, irrespective of basis input file. ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- Be DHF Basis from dalton Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the xz-plane Reflection in the yz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B2 | 1 -1 -1 1 B1 | 1 -1 1 -1 A2 | 1 1 -1 -1 * Direct product table | A1 B2 B1 A2 -----+-------------------- A1 | A1 B2 B1 A2 B2 | B2 A1 A2 B1 B1 | B1 A2 A1 B2 A2 | A2 B1 B2 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B2 k B1 j A2 i Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 41 41 L - [11s6p2d|11s6p2d] 101 101 S - [6s13p6d2f|6s13p6d2f] ---------------------------------------------------------------------- 41 41 L - large components 101 101 S - small components ---------------------------------------------------------------------- total: 1 4 142 142 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). CORE, POLARIZATION AND/OR DIFFUSE FUNCTIONS Elements References Cartesian Coordinates --------------------- Total number of coordinates: 3 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 1 Be 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 1 1 1 0 Symmetry 1 1 Be z 3 Symmetry 2 2 Be y 2 Symmetry 3 3 Be x 1 Nuclear repulsion energy : 0.000000000000 GETLAB: AO-labels ----------------- * Large components: 10 1 L Be 1 s 2 L Be 1 px 3 L Be 1 py 4 L Be 1 pz 5 L Be 1 dxx 6 L Be 1 dxy 7 L Be 1 dxz 8 L Be 1 dyy 9 L Be 1 dyz 10 L Be 1 dzz * Small components: 20 11 S Be 1 s 12 S Be 1 px 13 S Be 1 py 14 S Be 1 pz 15 S Be 1 dxx 16 S Be 1 dxy 17 S Be 1 dxz 18 S Be 1 dyy 19 S Be 1 dyz 20 S Be 1 dzz 21 S Be 1 fxxx 22 S Be 1 fxxy 23 S Be 1 fxxz 24 S Be 1 fxyy 25 S Be 1 fxyz 26 S Be 1 fxzz 27 S Be 1 fyyy 28 S Be 1 fyyz 29 S Be 1 fyzz 30 S Be 1 fzzz GETLAB: SO-labels ----------------- * Large components: 10 1 L A1 Be s 2 L A1 Be pz 3 L A1 Be dxx 4 L A1 Be dyy 5 L A1 Be dzz 6 L B2 Be py 7 L B2 Be dyz 8 L B1 Be px 9 L B1 Be dxz 10 L A2 Be dxy * Small components: 20 11 S A1 Be s 12 S A1 Be pz 13 S A1 Be dxx 14 S A1 Be dyy 15 S A1 Be dzz 16 S A1 Be fxxz 17 S A1 Be fyyz 18 S A1 Be fzzz 19 S B2 Be py 20 S B2 Be dyz 21 S B2 Be fxxy 22 S B2 Be fyyy 23 S B2 Be fyzz 24 S B1 Be px 25 S B1 Be dxz 26 S B1 Be fxxx 27 S B1 Be fxyy 28 S B1 Be fxzz 29 S A2 Be dxy 30 S A2 Be fxyz Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 66 33 33 10 Number of large orbitals in each symmetry: 23 8 8 2 Number of small orbitals in each symmetry: 43 25 25 8 * Large component functions Symmetry A1 ( 1) 11 functions: Be s 6 functions: Be pz 2 functions: Be dxx 2 functions: Be dyy 2 functions: Be dzz Symmetry B2 ( 2) 6 functions: Be py 2 functions: Be dyz Symmetry B1 ( 3) 6 functions: Be px 2 functions: Be dxz Symmetry A2 ( 4) 2 functions: Be dxy * Small component functions Symmetry A1 ( 1) 6 functions: Be s 13 functions: Be pz 6 functions: Be dxx 6 functions: Be dyy 6 functions: Be dzz 2 functions: Be fxxz 2 functions: Be fyyz 2 functions: Be fzzz Symmetry B2 ( 2) 13 functions: Be py 6 functions: Be dyz 2 functions: Be fxxy 2 functions: Be fyyy 2 functions: Be fyzz Symmetry B1 ( 3) 13 functions: Be px 6 functions: Be dxz 2 functions: Be fxxx 2 functions: Be fxyy 2 functions: Be fxzz Symmetry A2 ( 4) 6 functions: Be dxy 2 functions: Be fxyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Dirac-Coulomb Hamiltonian * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 1 - SS-integrals: 1 - GT-integrals: 0 * Basis set: - uncontracted large component basis set - uncontracted small component basis set Information about the restricted kinetic balance scheme: * Default RKB projection: 1: Pre-projection in scalar basis 2: Removal of unphysical solutions (via diagonalization of free particle Hamiltonian) ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation =========================================================================== SCFINP: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 1 * Closed shell SCF calculation with 4 electrons in 2 orbitals. * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-10 Allowed convergence:1.000D-07 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. SL-integrals below SCF convergence 1.0D-02 SS-integrals below SCF convergence 1.0D-04 ---> this is default setting from Hamiltonian input ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1 :1..20 * Print level: 1 * INFORMATION: No property input "**PROPE" found in input file. - No properties calculated. =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1 No explicit orbitals specified * Set-up for 2-index transformation * Active spaces: Fermion ircop:E1 No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1 No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* Nuclear contribution to dipole moments -------------------------------------- au Debye z 0.00000000 0.00000000 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.10E-02 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.55E-01 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.55E-01 L A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.43E+00 S A1 * Deleted: 8(Proj: 8, Lindep: 0) Smin: 0.17E-02 S B2 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.17E-02 S B1 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.17E-02 S A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.92E-01 Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 1... ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 39 No. of negative energy orbitals (NPSH): 39 Total no. of orbitals (NORB): 78 **************************************************************************** ************************* Hartree-Fock calculation ************************* **************************************************************************** *** INFO *** No trial vectors found. Using atomic Huckel start. ########## START ITERATION NO. 1 ########## Wed Jul 15 13:13:34 2020 => Calculating sum of orbital energies It. 1 -8.233350445020 0.00D+00 0.00D+00 0.00D+00 0.00498200s Scr. nuclei Wed Jul 15 ########## START ITERATION NO. 2 ########## Wed Jul 15 13:13:34 2020 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 30.38% 5.61% 2.63% 0.00101400s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.03146700s ########## END ITERATION NO. 2 ########## Wed Jul 15 13:13:34 2020 It. 2 -14.52934901008 6.30D+00 -4.73D+00 4.21D-01 0.03146700s LL Wed Jul 15 ########## START ITERATION NO. 3 ########## Wed Jul 15 13:13:34 2020 3 *** Differential density matrix. DCOVLP = 0.9246 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 30.56% 2.73% 2.64% 0.00176000s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.00628900s ########## END ITERATION NO. 3 ########## Wed Jul 15 13:13:34 2020 It. 3 -14.57347929300 4.41D-02 8.11D-02 4.54D-02 DIIS 2 0.00628900s LL Wed Jul 15 ########## START ITERATION NO. 4 ########## Wed Jul 15 13:13:34 2020 4 *** Differential density matrix. DCOVLP = 1.0612 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 30.67% 5.45% 2.64% 0.00175900s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.00583800s ########## END ITERATION NO. 4 ########## Wed Jul 15 13:13:34 2020 It. 4 -14.57630210401 2.82D-03 1.61D-02 1.07D-02 DIIS 3 0.00583800s LL Wed Jul 15 ########## START ITERATION NO. 5 ########## Wed Jul 15 13:13:34 2020 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 30.95% 5.08% 2.66% 0.00176700s SOfock:SL 1.00D-12 49.74% 18.73% 2.22% 12.59% 0.00890400s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01528700s ########## END ITERATION NO. 5 ########## Wed Jul 15 13:13:34 2020 It. 5 -14.57526362540 -1.04D-03 8.38D+00 9.28D-02 0.01528700s LL SL Wed Jul 15 ########## START ITERATION NO. 6 ########## Wed Jul 15 13:13:34 2020 6 *** Differential density matrix. DCOVLP = 1.0013 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 31.59% 4.88% 2.68% 0.00146700s SOfock:SL 1.00D-12 50.06% 24.03% 1.85% 12.00% 0.00739999s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01365100s ########## END ITERATION NO. 6 ########## Wed Jul 15 13:13:34 2020 It. 6 -14.57526436451 7.39D-07 -7.39D-04 2.11D-04 DIIS 2 0.01365100s LL SL Wed Jul 15 ########## START ITERATION NO. 7 ########## Wed Jul 15 13:13:34 2020 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 45.53% 17.39% 8.95% 2.80% 0.00127600s SOfock:SL 1.00D-12 50.84% 17.02% 5.29% 12.54% 0.00795801s SOfock:SS 1.00D-12 55.17% 11.57% 6.26% 12.39% 0.01848000s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.04156700s ########## END ITERATION NO. 7 ########## Wed Jul 15 13:13:34 2020 It. 7 -14.57526434790 -1.66D-08 1.46D-03 6.63D-05 0.04156700s LL SL SS Wed Jul 15 ########## START ITERATION NO. 8 ########## Wed Jul 15 13:13:34 2020 8 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 32.71% 4.11% 0.17% 0.00194201s SOfock:SL 1.00D-12 50.68% 25.04% 3.27% 11.91% 0.00921600s SOfock:SS 1.00D-12 55.17% 30.84% 4.80% 11.81% 0.02162600s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.03872900s ########## END ITERATION NO. 8 ########## Wed Jul 15 13:13:34 2020 It. 8 -14.57526435534 7.44D-09 1.70D-05 2.13D-05 DIIS 2 0.03872900s LL SL SS Wed Jul 15 ########## START ITERATION NO. 9 ########## Wed Jul 15 13:13:34 2020 9 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 32.92% 4.29% 2.75% 0.00180401s SOfock:SL 1.00D-12 50.06% 28.04% 1.63% 11.50% 0.00757201s SOfock:SS 1.00D-12 55.17% 32.92% 4.58% 11.88% 0.01990300s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.03413700s ########## END ITERATION NO. 9 ########## Wed Jul 15 13:13:34 2020 It. 9 -14.57526435624 9.06D-10 9.62D-06 8.15D-07 DIIS 3 0.03413700s LL SL SS Wed Jul 15 ########## START ITERATION NO. 10 ########## Wed Jul 15 13:13:34 2020 10 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 35.20% 3.71% 2.87% 0.00144200s SOfock:SL 1.00D-12 50.06% 33.26% 1.37% 11.33% 0.00840800s SOfock:SS 1.00D-12 55.17% 40.98% 3.11% 14.07% 0.01936200s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.03440200s ########## END ITERATION NO. 10 ########## Wed Jul 15 13:13:34 2020 It. 10 -14.57526435625 1.20D-12 6.13D-07 9.52D-08 DIIS 4 0.03440200s LL SL SS Wed Jul 15 ########## START ITERATION NO. 11 ########## Wed Jul 15 13:13:35 2020 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 39.15% 34.05% 2.97% 4.34% 0.00181898s SOfock:SL 1.00D-12 51.15% 35.86% 4.23% 11.36% 0.00771698s SOfock:SS 1.00D-12 60.31% 39.60% 0.57% 17.78% 0.01811001s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.03198500s ########## END ITERATION NO. 11 ########## Wed Jul 15 13:13:35 2020 It. 11 -14.57526435625 7.11D-15 7.98D-08 2.96D-09 DIIS 3 0.03198500s LL SL SS Wed Jul 15 ########## START ITERATION NO. 12 ########## Wed Jul 15 13:13:35 2020 12 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 51.27% 26.57% 4.57% 3.24% 0.00156301s SOfock:SL 1.00D-12 59.22% 33.10% 0.87% 14.49% 0.00624499s SOfock:SS 1.00D-12 100.00% 0.00% 0.00% 0.00% 0.00621700s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01751500s ########## END ITERATION NO. 12 ########## Wed Jul 15 13:13:35 2020 It. 12 -14.57526435625 7.11D-15 1.33D-09 2.88D-10 DAMP 25% 0.01751500s LL SL SS Wed Jul 15 ########## START ITERATION NO. 13 ########## Wed Jul 15 13:13:35 2020 13 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 36.92% 47.10% 1.79% 3.50% 0.00162899s SOfock:SL 1.00D-12 59.63% 34.80% 0.00% 20.63% 0.00617701s SOfock:SS 1.00D-12 100.00% 0.00% 0.00% 0.00% 0.00418100s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01566000s ########## END ITERATION NO. 13 ########## Wed Jul 15 13:13:35 2020 It. 13 -14.57526435625 1.01D-13 6.91D-10 1.61D-10 DAMP 25% 0.01566000s LL SL SS Wed Jul 15 ########## START ITERATION NO. 14 ########## Wed Jul 15 13:13:35 2020 14 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 53.51% 31.81% 3.00% 5.32% 0.00129998s SOfock:SL 1.00D-12 67.28% 27.85% 0.00% 18.40% 0.00567898s SOfock:SS 1.00D-12 100.00% 0.00% 0.00% 0.00% 0.00418702s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01359700s ########## END ITERATION NO. 14 ########## Wed Jul 15 13:13:35 2020 It. 14 -14.57526435625 4.42D-13 3.38D-10 7.21D-11 DAMP 25% 0.01359700s LL SL SS Wed Jul 15 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-10 Allowed convergence:1.000D-07 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -8.233350445020 0.00D+00 0.00D+00 0.00D+00 0.00498200s Scr. nuclei Wed Jul 15 It. 2 -14.52934901008 6.30D+00 -4.73D+00 4.21D-01 0.03146700s LL Wed Jul 15 It. 3 -14.57347929300 4.41D-02 8.11D-02 4.54D-02 DIIS 2 0.00628900s LL Wed Jul 15 It. 4 -14.57630210401 2.82D-03 1.61D-02 1.07D-02 DIIS 3 0.00583800s LL Wed Jul 15 It. 5 -14.57526362540 -1.04D-03 8.38D+00 9.28D-02 0.01528700s LL SL Wed Jul 15 It. 6 -14.57526436451 7.39D-07 -7.39D-04 2.11D-04 DIIS 2 0.01365100s LL SL Wed Jul 15 It. 7 -14.57526434790 -1.66D-08 1.46D-03 6.63D-05 0.04156700s LL SL SS Wed Jul 15 It. 8 -14.57526435534 7.44D-09 1.70D-05 2.13D-05 DIIS 2 0.03872900s LL SL SS Wed Jul 15 It. 9 -14.57526435624 9.06D-10 9.62D-06 8.15D-07 DIIS 3 0.03413700s LL SL SS Wed Jul 15 It. 10 -14.57526435625 1.20D-12 6.13D-07 9.52D-08 DIIS 4 0.03440200s LL SL SS Wed Jul 15 It. 11 -14.57526435625 7.11D-15 7.98D-08 2.96D-09 DIIS 3 0.03198500s LL SL SS Wed Jul 15 It. 12 -14.57526435625 7.11D-15 1.33D-09 2.88D-10 DAMP 25% 0.01751500s LL SL SS Wed Jul 15 It. 13 -14.57526435625 1.01D-13 6.91D-10 1.61D-10 DAMP 25% 0.01566000s LL SL SS Wed Jul 15 It. 14 -14.57526435625 4.42D-13 3.38D-10 7.21D-11 DAMP 25% 0.01359700s LL SL SS Wed Jul 15 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 14 iterations. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL : 0.00000000s LL SL : 0.00000000s LL SL SS : 0.00000000s TOTAL ENERGY ------------ Electronic energy : -14.575264356246459 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000000 Sum of all contributions to the energy Total energy : -14.575264356246459 Eigenvalues ----------- * Fermion symmetry E1 * Closed shell, f = 1.0000 -4.733533998530 ( 2) -0.309426061330 ( 2) * Virtual eigenvalues, f = 0.0000 0.016707155960 ( 6) 0.048434788840 ( 2) 0.068451991595 ( 2) 0.068460439398 ( 4) 0.226254236705 (10) 0.335708105712 ( 2) 0.335735195709 ( 4) 0.353358677960 ( 2) 0.796092297520 ( 4) 0.796101854302 ( 6) 1.358206556442 ( 2) 1.358362131628 ( 4) 2.314404252320 ( 2) 6.563937274190 ( 2) 6.564794760583 ( 4) 8.170348998046 ( 2) 21.465663625600 ( 2) 21.471899245694 ( 4) 22.250950873417 ( 2) 65.463184509352 ( 2) 225.693695498914 ( 2) 929.991196858064 ( 2) 4983.121365649549 ( 2) * HOMO - LUMO gap: E(LUMO) : 0.01670716 au (symmetry E1 ) - E(HOMO) : -0.30942606 au (symmetry E1 ) ------------------------------------------ gap : 0.32613322 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1 ---------------- Fermion ircop E1 ---------------- * Electronic eigenvalue no. 1: -4.7335339985296 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be s -------------------------------------- alpha 0.9999 | 0.9998 beta 0.0001 | 0.0000 * Electronic eigenvalue no. 2: -0.3094260613299 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 3: 0.167071560E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.3333 | 0.3333 0.0000 0.0000 beta 0.6667 | 0.0000 0.3333 0.3333 * Electronic eigenvalue no. 4: 0.167079328E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py ----------------------------------------------------- alpha 0.5006 | 0.5006 0.0000 beta 0.4994 | 0.0000 0.4994 * Electronic eigenvalue no. 5: 0.167079328E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.1660 | 0.1660 0.0000 0.0000 beta 0.8340 | 0.0000 0.1673 0.6667 * Electronic eigenvalue no. 6: 0.484347888E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 7: 0.684519916E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.3333 | 0.3333 0.0000 0.0000 beta 0.6667 | 0.0000 0.3333 0.3333 * Electronic eigenvalue no. 8: 0.684604394E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.5968 | 0.5968 0.0000 0.0000 beta 0.4032 | 0.0000 0.3784 0.0248 * Electronic eigenvalue no. 9: 0.684604394E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.0699 | 0.0699 0.0000 0.0000 beta 0.9301 | 0.0000 0.2882 0.6419 * Electronic eigenvalue no. 10: 0.2262542367046 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L A1 Be dzz L B2 Be dyz L B1 Be dxz L A2 Be dxy ----------------------------------------------------------------------------------------------------------------- alpha 0.7899 | 0.2329 0.1604 0.0067 0.0000 0.0000 0.3899 beta 0.2101 | 0.0000 0.0000 0.0000 0.0507 0.1594 0.0000 * Electronic eigenvalue no. 11: 0.2262542367062 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L A1 Be dzz L B2 Be dyz L B1 Be dxz L A2 Be dxy ----------------------------------------------------------------------------------------------------------------- alpha 0.4101 | 0.0338 0.1063 0.2599 0.0000 0.0000 0.0101 beta 0.5899 | 0.0000 0.0000 0.0000 0.3493 0.2406 0.0000 * Electronic eigenvalue no. 12: 0.2262544132112 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L B2 Be dyz L B1 Be dxz L A2 Be dxy -------------------------------------------------------------------------------------------------- alpha 0.9302 | 0.1703 0.1686 0.0000 0.0000 0.5913 beta 0.0698 | 0.0000 0.0000 0.0355 0.0344 0.0000 * Electronic eigenvalue no. 13: 0.2262544132173 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L A1 Be dzz L B2 Be dyz L B1 Be dxz L A2 Be dxy ----------------------------------------------------------------------------------------------------------------- alpha 0.5717 | 0.0378 0.1681 0.3652 0.0000 0.0000 0.0006 beta 0.4283 | 0.0000 0.0000 0.0000 0.3659 0.0624 0.0000 * Electronic eigenvalue no. 14: 0.2262544132217 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L A1 Be dzz L B2 Be dyz L B1 Be dxz L A2 Be dxy ----------------------------------------------------------------------------------------------------------------- alpha 0.2981 | 0.1919 0.0633 0.0348 0.0000 0.0000 0.0081 beta 0.7019 | 0.0000 0.0000 0.0000 0.1987 0.5032 0.0000 * Electronic eigenvalue no. 15: 0.3357081057116 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.3333 | 0.3333 0.0000 0.0000 beta 0.6667 | 0.0000 0.3333 0.3333 * Electronic eigenvalue no. 16: 0.3357351957092 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.5676 | 0.5676 0.0000 0.0000 beta 0.4324 | 0.0000 0.4216 0.0108 * Electronic eigenvalue no. 17: 0.3357351957194 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be pz L B2 Be py L B1 Be px -------------------------------------------------------------------- alpha 0.0991 | 0.0991 0.0000 0.0000 beta 0.9009 | 0.0000 0.2451 0.6558 * Electronic eigenvalue no. 18: 0.3533586779599 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 19: 0.7960922975204 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L A1 Be dzz L B2 Be dyz L B1 Be dxz L A2 Be dxy ----------------------------------------------------------------------------------------------------------------- alpha 0.4637 | 0.0034 0.1724 0.2242 0.0000 0.0000 0.0637 beta 0.5363 | 0.0000 0.0000 0.0000 0.3949 0.1413 0.0000 * Electronic eigenvalue no. 20: 0.7960922975230 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 Be dxx L A1 Be dyy L A1 Be dzz L B2 Be dyz L B1 Be dxz L A2 Be dxy ----------------------------------------------------------------------------------------------------------------- alpha 0.7362 | 0.2633 0.0942 0.0425 0.0000 0.0000 0.3363 beta 0.2638 | 0.0000 0.0000 0.0000 0.0051 0.2586 0.0000 *** Total gross population *** Gross Total | L A1 Be s A1 Be _small B2 Be _small B1 Be _small ----------------------------------------------------------------------------------- total 4.00000 | 3.99961 0.00013 0.00013 0.00013 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Wed Jul 15 13:13:35 2020 * REACMO: Coefficients read from file DFCOEF - Total energy: -14.5752643562460165 * Heading :Be DHF test calculations. Wed Jul 15 13:13:35 2020 Energy selection of active orbitals : -20000.00 < Eps. < 20.00 with a mininum gap of 0.0100 au. Energy selection of active orbitals : -20000.00 < Eps. < 20.00 with a mininum gap of 0.0100 au. Energy selection of active orbitals : -20000.00 < Eps. < 20.00 with a mininum gap of 0.0100 au. Energy selection of active orbitals : -20000.00 < Eps. < 20.00 with a mininum gap of 0.0100 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1 Index 1 31 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Index 2 31 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Index 3 31 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Index 4 31 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 * Core orbital ranges for 2-index transformation: * Fermion ircop E1 No orbitals for index 1 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Wed Jul 15 13:13:35 2020 * REACMO: Coefficients read from file DFCOEF - Total energy: -14.5752643562460165 * Heading :Be DHF test calculations. Wed Jul 15 13:13:35 2020 * REAFCK: Fock matrix read from file /public/home/ymyu/DIRAC_scratch_directory/ymyu/DIRAC_Be_Be_2 * Heading :Be DHF test calculations. Wed Jul 15 13:13:34 2020 Core energy (includes nuclear repulsion) : 0.0000000000 - Electronic part : 0.0000000000 - One-electron terms : 0.0000000000 - Two-electron terms : 0.0000000000 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 3 after 0. seconds and 0. CPU-seconds - Integral class 2 : (SS|??) - Beginning task 4 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 5 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 6 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 7 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 8 of 8 after 0. seconds and 0. CPU-seconds Node 0 finished first half transformation 3867295 HT integrals written ( 66.94%, 0.09 GB) <<< Starting 2HT on node 0 >>> Finished 2HT on node 0 >>> Time used in 2HT_all is 1.49 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% (SS|LL)ints : 0.00% (SS|SS)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 0.781 seconds Time in Second halftransformation 1.494 seconds ------ End of timing report ------ Total wall time used in PAMTRA : 00:00:00 Total CPU time used in PAMTRA (master only) : 00:00:02 Transformation ended at : Wed Jul 15 13:13:44 2020 ******************************************************************* ************************* Property module ************************* ******************************************************************* This is output from the Dirac property module: HF & DFT first order properties Trond Saue First-order ESR properties Hans Joergen Aa. Jensen et al. MP2 first order properties: J. N. P. van Stralen, L. Visscher, C. V. Larsen and H. J. Aa Jensen, Chem. Phys. 311 (2005) 81. KR-RPA second-order properties Hans Joergen Aa. Jensen and Trond Saue KR-QR third order properties Patrick Norman and Hans Joergen Aa. Jensen Molecular gradient Joern Thyssen Additional contributions from: Thomas Enevoldsen, Miroslav Ilias (London orbitals) ******************************************************* ********** Properties for DHF wave function ********** ******************************************************* ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Wed Jul 15 13:13:44 2020 Host name : comput44 >>>> Node 0, utime: 1, stime: 1, minflt: 220169, majflt: 165, nvcsw: 1420, nivcsw: 1436, maxrss: 206952 >>>> Total WALL time used in DIRAC: 11s Dynamical Memory Usage Summary Mean allocation size (Mb) : 7812.56 Largest 10 allocations 31250.00 Mb at subroutine pamprp_+0x2b0 for WORK in PAMPRP_1 31250.00 Mb at subroutine pamtra_+0x17c for WORK in PAMTRA 31250.00 Mb at subroutine pamana_+0xa5 for WORK in PAMANA 31250.00 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 31250.00 Mb at subroutine pamset_+0x1868 for WORK in PAMSET - 2 31250.00 Mb at subroutine gmotra_+0x4c0d for WORK in GMOTRA 31250.00 Mb at subroutine pamset_+0xa8 for WORK in PAMSET - 1 31250.00 Mb at subroutine MAIN__+0x535 for test allocation of work array in DIRAC mai 0.76 Mb at subroutine paminp_+0x8a for PAMINP WORK array 0.15 Mb at subroutine butobs_no_work_+0x8f for buf in butobs Peak memory usage (Mb) : 31250.00 reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs MEMGET high-water mark: 0.00 MB *****************************************************