DIRAC pam run in /public/home/ymyu/yym/MRCC/BeHx2c ** interface to 64-bit integer MPI enabled ** DIRAC master (comput39) starts by allocating 512000000 words ( 3906 MB) of memory DIRAC master (comput39) has no limitations in place for the amount of dynamically allocated memory Note: maximum allocatable memory for master+nodes can be set by -aw flag (MW) in pam ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast KTH/PDC Stockholm Sweden * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Artic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Jon K. Laerdahl University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC14 (2014), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, Y. S. Lee, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, * * J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, * * K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, * * and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Binary information ------------------ Who compiled | ymyu Host | admin1 System | Linux-3.10.0-693.el7.x86_64 CMake generator | Unix Makefiles Processor | x86_64 64-bit integers | ON MPI | ON Fortran compiler | /public/home/ymyu/soft/openmpi-Bianry/bin/mpif90 Fortran compiler version | ifort (IFORT) 17.0.5 20170817 C compiler | /public/home/ymyu/soft/openmpi-Bianry/bin/mpicc C compiler version | icc (ICC) 17.0.5 20170817 C++ compiler | /usr/bin/g++ C++ compiler version | g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-16) Static linking | OFF Last Git revision | 1eca931be53f527aadc9f96bbde1203b0b998448 Configuration time | 2019-03-04 16:37:20.429834 Execution time and host ----------------------- Date and time (Linux) : Fri Sep 18 16:32:13 2020 Host name : comput39 Contents of the input file -------------------------- ! **DIRAC .TITLE BeH, CCSD .WAVE F .4INDEX **HAMILTONIAN .X2C **INTEGRALS *READINP .UNCONTRACT **WAVE FUNCTIONS .SCF *SCF .CLOSED SHELL 4 .OPEN SHELL 1 1/2 .EVCCNV 1.0D-9 5.0D-7 # reads starting (unperturbed) MOs, DFPCMO .MAXITR 30 **MOLTRA # all 5 electrons,all virtuals .ACTIVE all *END OF Contents of the molecule file ----------------------------- INTGRL BeH cc-pVDZ Basis C 2 2 X Y 4. 1 Be 0.0000000000 0.0000000000 0.0000000000 LARGE BASIS cc-pVDZ 1. 1 H 0.0000000000 0.0000000000 1.7325000297 LARGE BASIS cc-pVDZ FINISH ************************************************************************** ******************************* BeH, CCSD ******************************* ************************************************************************** Jobs in this run: * Wave function * Transformation to Molecular Spinor basis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for READIN: ------------------------------- Uncontracted basis forced, irrespective of basis input file. ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- BeH cc-pVDZ Basis Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i Atoms and basis sets -------------------- Number of atom types: 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 27 27 L - [9s4p1d|9s4p1d] H 1 1 7 7 L - [4s1p|4s1p] ---------------------------------------------------------------------- 34 34 L - large components ---------------------------------------------------------------------- total: 2 5 34 34 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates --------------------- Total number of coordinates: 6 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 1.7325000297 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 2 Be 0.0000000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.9167995291 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry 1 1 Be z 3 2 H z 6 Symmetry 2 3 Be x 1 4 H x 4 Symmetry 3 5 Be y 2 6 H y 5 Interatomic separations (in Angstroms): --------------------------------------- Be H Be 0.000000 H 0.916800 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H Be 0.916800 Nuclear repulsion energy : 2.308802269223 GETLAB: AO-labels ----------------- * Large components: 14 1 L Be 1 s 2 L Be 1 px 3 L Be 1 py 4 L Be 1 pz 5 L Be 1 dxx 6 L Be 1 dxy 7 L Be 1 dxz 8 L Be 1 dyy 9 L Be 1 dyz 10 L Be 1 dzz 11 L H 1 s 12 L H 1 px 13 L H 1 py 14 L H 1 pz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 14 1 L A1 Be s 2 L A1 Be pz 3 L A1 Be dxx 4 L A1 Be dyy 5 L A1 Be dzz 6 L A1 H s 7 L A1 H pz 8 L B1 Be px 9 L B1 Be dxz 10 L B1 H px 11 L B2 Be py 12 L B2 Be dyz 13 L B2 H py 14 L A2 Be dxy * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 21 6 6 1 Number of large orbitals in each symmetry: 21 6 6 1 Number of small orbitals in each symmetry: 0 0 0 0 * Large component functions Symmetry A1 ( 1) 9 functions: Be s 4 functions: Be pz 1 functions: Be dxx 1 functions: Be dyy 1 functions: Be dzz 4 functions: H s 1 functions: H pz Symmetry B1 ( 2) 4 functions: Be px 1 functions: Be dxz 1 functions: H px Symmetry B2 ( 3) 4 functions: Be py 1 functions: Be dyz 1 functions: H py Symmetry A2 ( 4) 1 functions: Be dxy *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== ...no reading under "*AMFI ", thus default settings * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * All AMFI mean-field summations are on neutral individual atoms. * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation =========================================================================== SCFINP: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 1 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 4 2 N/A 1.0000 1.0000 0.0000 Open shell no. 1 1.00 1 N/A 0.5000 0.0000 2.0000 ---------------------------------------------------------------------------- Total 5.00 3 f is the fraction occupation; a and alpha open shell coupling coefficients. * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-09 Allowed convergence:5.000D-07 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 30 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1 all * Set-up for 2-index transformation * LS Integrals not included in core Fock-matrix * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1 - Index 1: all - Index 2: all * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * LS Integrals not transformed. * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1 - Index 1: all - Index 2: all - Index 3: all - Index 4: all ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- BeH cc-pVDZ Basis Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i Atoms and basis sets -------------------- Number of atom types: 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 27 27 L - [9s4p1d|9s4p1d] H 1 1 7 7 L - [4s1p|4s1p] ---------------------------------------------------------------------- 34 34 L - large components 87 87 S - small components ---------------------------------------------------------------------- total: 2 5 121 121 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates --------------------- Total number of coordinates: 6 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 1.7325000297 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 2 Be 0.0000000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.9167995291 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry 1 1 Be z 3 2 H z 6 Symmetry 2 3 Be x 1 4 H x 4 Symmetry 3 5 Be y 2 6 H y 5 Interatomic separations (in Angstroms): --------------------------------------- Be H Be 0.000000 H 0.916800 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H Be 0.916800 Nuclear repulsion energy : 2.308802269223 Nuclear contribution to dipole moments -------------------------------------- au Debye z 1.73250003 4.40361660 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.80E-02 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.17E+00 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.17E+00 L A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 S A1 * Deleted: 6(Proj: 6, Lindep: 0) Smin: 0.87E-02 S B1 * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.13E-01 S B2 * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.13E-01 S A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.27E+00 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 2... Output from AMFIIN ------------------ *** number of unique nuclei (from file MNF.INP): 2 *** calculate AMFI for atom type 1 with atomic charge 4 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.4.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 0 Mean-field summation for electrons #: 4 ...electronic occupation of Be: [He]2s^2 **** Written to the file TOSCF for "relscf" **** charge: 4.000 nprimit: 9 4 1 0 closed sh.: 2 0 0 0 open sh.: 0 0 0 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 9 4 1 NUMBER OF CLOSED SHELLS : 2 0 0 OPEN SHELL OCCUPATION : 0 0 0 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -14.525278116208 3. iteration, total energy: -14.570399642871 4. iteration, total energy: -14.572221070321 5. iteration, total energy: -14.572292377746 6. iteration, total energy: -14.572334846759 7. iteration, total energy: -14.572337401919 8. iteration, total energy: -14.572337555267 9. iteration, total energy: -14.572337565080 10. iteration, total energy: -14.572337564821 11. iteration, total energy: -14.572337565034 12. iteration, total energy: -14.572337565047 12. iteration, total energy: -14.572337565048 ### NON-RELATIVISTIC APPROX. ### 12 -0.1457233757D+02 -0.2914469841D+02 0.1457236084D+02 -0.1999998402D+01 1. iteration, total energy: -14.574776975621 2. iteration, total energy: -14.574845249067 3. iteration, total energy: -14.574845254770 4. iteration, total energy: -14.574845254814 5. iteration, total energy: -14.574845258635 6. iteration, total energy: -14.574845254816 7. iteration, total energy: -14.574845254816 7. iteration, total energy: -14.574845254816 ### EV OPERATOR RESULT ### 7 -0.1457484525D+02 -0.2915484139D+02 0.1457999614D+02 -0.1999646716D+01 *** AMFIIN: ADDING nucleus 1 with charge 4 to the BSSn Hamiltonian. *** calculate AMFI for atom type 2 with atomic charge 1 *** number of nuclei with identical atom type: 1 no 2e-SO corrections for hydrogen or hydrogen-like 1e-systems. AMFI is skipped . unique nuclei index: 2 *** This (AMFI) unique nuclei is not to be calculated ! Only pass (to read input basis) through the AMFI routine. ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators skip explicit AMFI - reading AMFI integrals from file AOPROPER_MNF.xxx! ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Nuclear contribution to dipole moments -------------------------------------- au Debye z 1.73250003 4.40361660 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.80E-02 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.17E+00 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.17E+00 L A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 33 No. of negative energy orbitals (NPSH): 0 Total no. of orbitals (NORB): 33 ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using atomic Huckel start. ########## START ITERATION NO. 1 ########## Fri Sep 18 16:32:13 2020 => Calculating sum of orbital energies It. 1 -6.493580785345 0.00D+00 0.00D+00 0.00D+00 0.00076400s Scr. nuclei Fri Sep 18 ########## START ITERATION NO. 2 ########## Fri Sep 18 16:32:13 2020 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 1.40% 0.00% 0.00% 0.00870600s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01988500s ########## END ITERATION NO. 2 ########## Fri Sep 18 16:32:13 2020 It. 2 -15.01363192210 8.52D+00 2.02D+00 5.17D-01 0.01988500s LL Fri Sep 18 ########## START ITERATION NO. 3 ########## Fri Sep 18 16:32:13 2020 3 *** Differential density matrix. DCOVLP = 0.9702 3 *** Differential density matrix. DVOVLP( 1) = 0.6487 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 1.67% 0.00% 0.00% 0.00896800s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.12294000s ########## END ITERATION NO. 3 ########## Fri Sep 18 16:32:13 2020 It. 3 -15.05198922336 3.84D-02 -1.18D-01 5.21D-02 DIIS 2 0.12294000s LL Fri Sep 18 ########## START ITERATION NO. 4 ########## Fri Sep 18 16:32:14 2020 4 *** Differential density matrix. DCOVLP = 0.9967 4 *** Differential density matrix. DVOVLP( 1) = 0.8802 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 1.79% 0.00% 0.00% 0.00000000s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01183400s ########## END ITERATION NO. 4 ########## Fri Sep 18 16:32:14 2020 It. 4 -15.05432695629 2.34D-03 -6.75D-03 1.72D-02 DIIS 3 0.01183400s LL Fri Sep 18 ########## START ITERATION NO. 5 ########## Fri Sep 18 16:32:14 2020 5 *** Differential density matrix. DCOVLP = 1.0008 5 *** Differential density matrix. DVOVLP( 1) = 0.9469 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 1.85% 0.00% 0.00% 0.00416300s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.08889800s ########## END ITERATION NO. 5 ########## Fri Sep 18 16:32:14 2020 It. 5 -15.05480928246 4.82D-04 5.01D-03 6.99D-03 DIIS 4 0.08889800s LL Fri Sep 18 ########## START ITERATION NO. 6 ########## Fri Sep 18 16:32:14 2020 6 *** Differential density matrix. DCOVLP = 0.9987 6 *** Differential density matrix. DVOVLP( 1) = 0.9894 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 1.97% 0.00% 0.00% 0.00000000s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01197300s ########## END ITERATION NO. 6 ########## Fri Sep 18 16:32:14 2020 It. 6 -15.05489072762 8.14D-05 2.70D-03 2.12D-03 DIIS 5 0.01197300s LL Fri Sep 18 ########## START ITERATION NO. 7 ########## Fri Sep 18 16:32:14 2020 7 *** Differential density matrix. DCOVLP = 0.9998 7 *** Differential density matrix. DVOVLP( 1) = 0.9955 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 2.13% 0.00% 0.00% 0.00240400s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01195000s ########## END ITERATION NO. 7 ########## Fri Sep 18 16:32:14 2020 It. 7 -15.05490084335 1.01D-05 1.21D-03 3.52D-04 DIIS 6 0.01195000s LL Fri Sep 18 ########## START ITERATION NO. 8 ########## Fri Sep 18 16:32:14 2020 8 *** Differential density matrix. DCOVLP = 0.9998 8 *** Differential density matrix. DVOVLP( 1) = 1.0004 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 2.95% 0.00% 0.00% 0.00791800s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01214000s ########## END ITERATION NO. 8 ########## Fri Sep 18 16:32:14 2020 It. 8 -15.05490104867 2.05D-07 9.77D-05 7.00D-05 DIIS 7 0.01214000s LL Fri Sep 18 ########## START ITERATION NO. 9 ########## Fri Sep 18 16:32:14 2020 9 *** Differential density matrix. DCOVLP = 1.0000 9 *** Differential density matrix. DVOVLP( 1) = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 4.14% 0.00% 0.00% 0.00776801s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01250700s ########## END ITERATION NO. 9 ########## Fri Sep 18 16:32:14 2020 It. 9 -15.05490106092 1.23D-08 2.21D-05 1.58D-05 DIIS 8 0.01250700s LL Fri Sep 18 ########## START ITERATION NO. 10 ########## Fri Sep 18 16:32:14 2020 10 *** Differential density matrix. DCOVLP = 1.0000 10 *** Differential density matrix. DVOVLP( 1) = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 5.55% 0.00% 0.00% 0.00809599s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01231100s ########## END ITERATION NO. 10 ########## Fri Sep 18 16:32:14 2020 It. 10 -15.05490106160 6.77D-10 7.35D-06 2.99D-06 DIIS 9 0.01231100s LL Fri Sep 18 ########## START ITERATION NO. 11 ########## Fri Sep 18 16:32:14 2020 11 *** Differential density matrix. DCOVLP = 1.0000 11 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 8.82% 0.00% 0.00% 0.00893499s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01239900s ########## END ITERATION NO. 11 ########## Fri Sep 18 16:32:14 2020 It. 11 -15.05490106162 2.07D-11 1.49D-06 6.88D-07 DIIS 9 0.01239900s LL Fri Sep 18 ########## START ITERATION NO. 12 ########## Fri Sep 18 16:32:14 2020 12 *** Differential density matrix. DCOVLP = 1.0000 12 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 13.25% 0.00% 0.01% 0.00796200s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01223200s ########## END ITERATION NO. 12 ########## Fri Sep 18 16:32:14 2020 It. 12 -15.05490106163 2.38D-12 3.79D-07 4.28D-07 DIIS 9 0.01223200s LL Fri Sep 18 ########## START ITERATION NO. 13 ########## Fri Sep 18 16:32:14 2020 13 *** Differential density matrix. DCOVLP = 1.0000 13 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 13.56% 0.00% 0.00% 0.00740799s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01239500s ########## END ITERATION NO. 13 ########## Fri Sep 18 16:32:14 2020 It. 13 -15.05490106163 1.55D-12 5.79D-07 5.51D-08 DIIS 9 0.01239500s LL Fri Sep 18 ########## START ITERATION NO. 14 ########## Fri Sep 18 16:32:14 2020 14 *** Differential density matrix. DCOVLP = 1.0000 14 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 17.15% 0.00% 0.02% 0.00849201s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01074300s ########## END ITERATION NO. 14 ########## Fri Sep 18 16:32:14 2020 It. 14 -15.05490106163 -1.78D-14 -6.05D-08 5.73D-09 DIIS 3 0.01074300s LL Fri Sep 18 ########## START ITERATION NO. 15 ########## Fri Sep 18 16:32:14 2020 15 *** Differential density matrix. DCOVLP = 1.0000 15 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 25.14% 0.15% 0.38% 0.00790802s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01123400s ########## END ITERATION NO. 15 ########## Fri Sep 18 16:32:14 2020 It. 15 -15.05490106163 -1.60D-13 1.23D-09 1.62D-09 DAMP 25% 0.01123400s LL Fri Sep 18 ########## START ITERATION NO. 16 ########## Fri Sep 18 16:32:14 2020 16 *** Differential density matrix. DCOVLP = 1.0000 16 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 39.41% 0.31% 1.02% 0.00755900s >>> Total wall time: 0.00000000s >>> Total CPU time : 0.01079000s ########## END ITERATION NO. 16 ########## Fri Sep 18 16:32:14 2020 It. 16 -15.05490106163 2.84D-14 4.70D-10 8.76D-10 DAMP 25% 0.01079000s LL Fri Sep 18 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-09 Allowed convergence:5.000D-07 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -6.493580785345 0.00D+00 0.00D+00 0.00D+00 0.00076400s Scr. nuclei Fri Sep 18 It. 2 -15.01363192210 8.52D+00 2.02D+00 5.17D-01 0.01988500s LL Fri Sep 18 It. 3 -15.05198922336 3.84D-02 -1.18D-01 5.21D-02 DIIS 2 0.12294000s LL Fri Sep 18 It. 4 -15.05432695629 2.34D-03 -6.75D-03 1.72D-02 DIIS 3 0.01183400s LL Fri Sep 18 It. 5 -15.05480928246 4.82D-04 5.01D-03 6.99D-03 DIIS 4 0.08889800s LL Fri Sep 18 It. 6 -15.05489072762 8.14D-05 2.70D-03 2.12D-03 DIIS 5 0.01197300s LL Fri Sep 18 It. 7 -15.05490084335 1.01D-05 1.21D-03 3.52D-04 DIIS 6 0.01195000s LL Fri Sep 18 It. 8 -15.05490104867 2.05D-07 9.77D-05 7.00D-05 DIIS 7 0.01214000s LL Fri Sep 18 It. 9 -15.05490106092 1.23D-08 2.21D-05 1.58D-05 DIIS 8 0.01250700s LL Fri Sep 18 It. 10 -15.05490106160 6.77D-10 7.35D-06 2.99D-06 DIIS 9 0.01231100s LL Fri Sep 18 It. 11 -15.05490106162 2.07D-11 1.49D-06 6.88D-07 DIIS 9 0.01239900s LL Fri Sep 18 It. 12 -15.05490106163 2.38D-12 3.79D-07 4.28D-07 DIIS 9 0.01223200s LL Fri Sep 18 It. 13 -15.05490106163 1.55D-12 5.79D-07 5.51D-08 DIIS 9 0.01239500s LL Fri Sep 18 It. 14 -15.05490106163 -1.78D-14 -6.05D-08 5.73D-09 DIIS 3 0.01074300s LL Fri Sep 18 It. 15 -15.05490106163 -1.60D-13 1.23D-09 1.62D-09 DAMP 25% 0.01123400s LL Fri Sep 18 It. 16 -15.05490106163 2.84D-14 4.70D-10 8.76D-10 DAMP 25% 0.01079000s LL Fri Sep 18 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 16 iterations. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL : 0.00000000s TOTAL ENERGY ------------ Electronic energy : -17.363703330849376 Other contributions to the total energy Nuclear repulsion energy : 2.308802269222841 Sum of all contributions to the energy Total energy : -15.054901061626534 Eigenvalues ----------- * Fermion symmetry E1 * Closed shell, f = 1.0000 -4.679185451119 ( 2) -0.538233721200 ( 2) * Open shell #1, f = 0.5000 -0.301635633548 ( 2) * Virtual eigenvalues, f = 0.0000 0.069970663929 ( 2) 0.069976714751 ( 2) 0.146586143624 ( 2) 0.290045339079 ( 2) 0.329889052264 ( 2) 0.329910169639 ( 2) 0.443383472987 ( 2) 0.636670844556 ( 2) 0.636676950204 ( 2) 0.656482791597 ( 2) 0.656492326096 ( 2) 0.675076000020 ( 2) 1.116744377758 ( 2) 1.366607573392 ( 2) 1.366705198337 ( 2) 1.477420458802 ( 2) 2.022777514815 ( 2) 2.022818826281 ( 2) 2.267121408465 ( 2) 3.573034560132 ( 2) 4.000992901951 ( 2) 7.165595137378 ( 2) 7.166752641832 ( 2) 7.349279216033 ( 2) 15.727485160984 ( 2) 22.596284433684 ( 2) 58.756041332593 ( 2) 219.559003902986 ( 2) 924.775158804269 ( 2) 4979.573221000126 ( 2) * HOMO - LUMO gap: E(LUMO) : 0.06997066 au (symmetry E1 ) - E(HOMO) : -0.30163563 au (symmetry E1 ) ------------------------------------------ gap : 0.37160630 au ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Fri Sep 18 16:32:14 2020 * REACMO: Coefficients read from file DFCOEF - Total energy: -15.0549010616265058 * Heading : BeH, CCSD Fri Sep 18 16:32:14 2020 * Orbital ranges for 4-index transformation: * Fermion ircop E1 Index 1 33 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Index 2 33 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Index 3 33 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Index 4 33 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 * Core orbital ranges for 2-index transformation: * Fermion ircop E1 No orbitals for index 1 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Fri Sep 18 16:32:14 2020 * REACMO: Coefficients read from file DFCOEF - Total energy: -15.0549010616265058 * Heading : BeH, CCSD Fri Sep 18 16:32:14 2020 * REAFCK: Fock matrix read from file /public/home/ymyu/DIRAC_scratch_directory/ymyu/DIRAC_BeH_BeH * Heading : BeH, CCSD Fri Sep 18 16:32:13 2020 Core energy (includes nuclear repulsion) : 2.3088022692 - Electronic part : 0.0000000000 - One-electron terms : 0.0000000000 - Two-electron terms : 0.0000000000 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 5 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 5 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 5 after 0. seconds and 0. CPU-seconds - Beginning task 4 of 5 after 0. seconds and 0. CPU-seconds - Beginning task 5 of 5 after 0. seconds and 0. CPU-seconds - Integral class 2 : (SS|??) Node 0 finished first half transformation 526115 HT integrals written ( 81.20%, 0.01 GB) <<< Starting 2HT on node 0 >>> Finished 2HT on node 0 >>> Time used in 2HT_all is 1.97 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 0.429 seconds Time in Second halftransformation 1.972 seconds ------ End of timing report ------ Total wall time used in PAMTRA : 00:00:00 Total CPU time used in PAMTRA (master only) : 00:00:02 Transformation ended at : Fri Sep 18 16:32:19 2020 ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Fri Sep 18 16:32:19 2020 Host name : comput39 >>>> Node 0, utime: 1, stime: 2, minflt: 191647, majflt: 28, nvcsw: 934, nivcsw: 2218, maxrss: 86228 >>>> Total WALL time used in DIRAC: 6s Dynamical Memory Usage Summary Mean allocation size (Mb) : 651.10 Largest 10 allocations 3906.25 Mb at subroutine pamtra_+0x17c for WORK in PAMTRA 3906.25 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 3906.25 Mb at subroutine pamset_+0x1868 for WORK in PAMSET - 2 3906.25 Mb at subroutine gmotra_+0x3aee for WORK in GMOTRA - part 2 3906.25 Mb at subroutine gmotra_+0x4c0d for WORK in GMOTRA 3906.25 Mb at subroutine pamset_+0xa8 for WORK in PAMSET - 1 3906.25 Mb at subroutine MAIN__+0x535 for test allocation of work array in DIRAC mai 0.76 Mb at subroutine paminp_+0x8a for PAMINP WORK array 0.11 Mb at subroutine butobs_no_work_+0x8f for buf in butobs 0.11 Mb at subroutine butobs_no_work_+0x8f for buf in butobs Peak memory usage (Mb) : 3906.00 reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs MEMGET high-water mark: 0.00 MB *****************************************************