--invoking executable-- /home/rkorol/Software/cfour/bin/xjoda ************************************************************************* <<< CCCCCC CCCCCC ||| CCCCCC CCCCCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCC CCC ||| CCC CCC >>> <<< CCCCCC CCCCCC ||| CCCCCC CCCCCC >>> ************************************************************************* **************************************************************** * CFOUR Coupled-Cluster techniques for Computational Chemistry * **************************************************************** Department of Chemistry Institut fuer Physikalische Chemie University of Florida Universitaet Mainz Gainesville, FL 32611, USA D-55099 Mainz, Germany Department of Chemistry Fakultaet fuer Chemie und Biowiss. Johns Hopkins University Karlsruher Institut fuer Technologie Baltimore, MD 21218, USA D-76131 Karlsruhe, Germany Department of Chemistry Department of Physical Chemistry Southern Methodist University Eotvos Lorand University Dallas, TX 75275, USA H-1053 Budapest, Hungary Version 2.1 hpc-92-29.cm.cluster Tue Jul 18 10:23:35 PDT 2023 integer*8 version is running ******************************************************************************** * Input from ZMAT file * ******************************************************************************** Calculation of diagonal Born-Oppenheimer corrections (DBOC) N *CFOUR(DBOC=1 MULTIPLICITY=4 CALC_LEVEL=CCSD CC_PROG=MRCC SCF_CONV=10 LINEQ_CONV=10 CC_CONV=10 CPHF_CONVER=18 LINEQ_MAXCYC=999 UNITS=BOHR BASIS=AUG-PVTZ MEM_UNIT=MB MEMORY_SIZE=19990) %masses 14.00307400443 ******************************************************************************** @GTFLGS-I, Calculation type set to UHF. ------------------------------------------------------------------- CFOUR Control Parameters ------------------------------------------------------------------- External Internal Value Units Name Name ------------------------------------------------------------------- ABCDTYPE IABCDT STANDARD [ 0] *** ANHARMONIC IANHAR OFF [ 0] *** ANH_ALGORIT IANALG STANDARD [ 0] *** ANH_DERIVAT IANDER SECOND [ 1] *** ANH_MODE ANHMOD VIBRATION [ 0] *** ANH_STEPSIZ ICUBST 50000 x 10-6 ANH_SYMMETR IANHSM ABELIAN [ 0] *** AO_LADDERS IAOLAD SINGLEPASS [ 1] *** AV_SCF IAVSCF OFF [ 0] *** BASIS IBASIS AUG-PVTZ [ 34] *** BOTHVECTORS BOTHVC OFF [ 0] *** BOX_POTENT IPIAB OFF [ 0] *** BREIT IBREIT OFF [ 0] *** BRUCK_CONV IBRTOL 10D- 4 *** BRUECKNER IBRKNR OFF [ 0] *** BUFFERSIZE IBUFFS 4096 *** CACHE_RECS ICHREC 10 *** CALCLEVEL ICLLVL CCSD [ 10] *** CCORBOPT ICCORB OFF [ 0] x 0.01 CC_CONV ICCCNV 10D- 10 *** CC_EXPORDER ICCEOR 5 *** CC_EXTRAPOL ICCEXT DIIS [ 1] *** CC_GUESS ICCGES MP2 [ 0] *** CC_MAXCYC ICCCYC 100 cycles CC_PROGRAM ICCPRO MRCC [ 2] *** CHARGE ICHRGE 0 *** CHOLESKY ICHOLE OFF [ 0] *** CIS_CONV ICISTL 5 *** COMM_SIZE IPSIZE *** *** CONSTANT ICONST OLD [ 1] *** CONTINUUM ICONTU NONE [ 0] *** CONTRACTION ICNTYP GENERAL [ 1] *** COORDINATES ICOORD INTERNAL [ 0] *** CPHF_CONVER ICPHFT 10D- 18 *** CPHF_MAXCYC ICPHFC 64 cycles CUBIC ICUBIC OFF [ 0] *** CURVILINEAR ICURVY OFF [ 0] *** DBOC IDBOC ON [ 1] *** DCT IDCT OFF [ 0] *** DERIV_LEV IDRLVL SECOND [ 2] *** DEVMEM_SIZE IDVMEM ********* MByte DIAG_MRCC IEOMST 10D- 0 *** DIFF_TYPE IDIFTY RELAXED [ 0] *** DIRECT IDIRCT OFF [ 0] *** DROPMO IDRPMO NONE ECP IECP OFF [ 0] *** EIGENVECTOR IVEC 1 *** EL_ANHARM IELANH OFF [ 0] *** EOMFOLLOW IEOMSR ENERGY [ 0] *** EOMIP IEOMIP OFF [ 0] *** EOMLEVEL HBARFM SAME [ 0] *** EOM_MRCC IMRCCE NEW [ 1] *** EOM_NONIT EOMNON OFF [ 0] *** EOM_NSING IEOMSI 10D- 0 *** EOM_NSTATES IMRCCD DAVIDSON [ 0] *** EOM_NTRIP IEOMTR 10D- 0 *** EOM_ORDER IEXORD ENERGY [ 0] *** EOM_PROPSTA IEOMST 0 *** ESTATE_CONV IEXTOL 10D- 5 *** ESTATE_DIAG IEXDIG ITERATIVE [ 0] *** ESTATE_LOCK IESLOC ON [ 1] *** ESTATE_MAXC IEXMXC 40 *** ESTATE_PROP IEXPRP OFF [ 0] *** EVAL_HESS IRECAL 0 # of cyc. EXCITATION IEXCIT 0 *** EXCITE IEXCIT NONE [ 0] *** EXTERN_POT IEXPOT OFF [ 0] *** FCGRADNEW IFCGNW OFF [ 0] *** FC_FIELD IFINFC 0 x 10-6 FD_CALTYPE IFDCAL GRADONLY [ 0] *** FD_PROJECT IFDPRJ OFF [ 1] *** FD_STEPSIZE IDISFD 0 10-4 bohr FD_USEGROUP IFDGRP FULL [ 0] *** FILE_RECSIZ IFLREC 4096 words FINITE_PERT IFIPER 0 x 10-6 FIXGEOM IFIXGM OFF [ 0] *** FOCK IFOCK AO [ 1] *** FREQ_ALGORI IVIALG STANDARD [ 0] *** FROZEN_CORE IFROCO OFF [ 0] *** GAMMA_ABCD IGABCD STORE [ 0] *** GAMMA_ABCI IGABCI STORE [ 0] *** GENBAS_1 IGNBS1 0 *** GENBAS_2 IGNBS2 0 *** GENBAS_3 IGNBS3 0 *** GENBAS_4 IGNBS4 0 *** GEO_CONV ICONTL 5 H/bohr GEO_MAXCYC IOPTCY 50 *** GEO_MAXSTEP IMXSTP 300 millibohr GEO_METHOD INR SINGLE_POINT[ 5] *** GIAO IGIAO OFF [ 1] *** GIMIC IGIMIC OFF [ 0] *** GRID IGRID OFF [ 0] *** GRID_ALGO IGALGO SERIAL [ 0] *** GUESS IGUESS MOREAD [ 0] *** HBAR IHBAR OFF [ 0] *** HESS_TYPE IHESTP SCF [ 0] *** HF2_FILE IHF2Fl USE [ 1] *** HFSTABILITY ISTABL OFF [ 0] *** INCORE INCORE OFF [ 0] *** INPUT_MRCC IMRCC ON [ 1] *** INTEGRALS INTTYP VMOL [ 1] *** JODA_PRINT IJPRNT 0 *** KEYWORD_OUT IDMPKW NO [ 0] *** LINDEP_TOL ILINDP 8 *** LINEQ_CONV IZTACN 10D- 10 cycles LINEQ_EXPOR ILMAXD 5 *** LINEQ_MAXCY ILMAXC 999 *** LINEQ_TYPE ILTYPE DIIS [ 1] *** LOCK_ORBOCC ILOCOC OFF [ 0] *** MEMORY_SIZE IMEMSZ ********* words MEM_UNIT IMEMU MB [ 2] *** MRCC IMRCCC OFF [ 0] *** MULTIPLICTY IMULTP 4 *** NACOUPLING IVCOUP OFF [ 0] *** NEGEVAL IDIE ABORT [ 0] *** NEWNORM INEWNO OFF [ 0] *** NON-HF INONHF OFF [ 0] *** NTOP_TAMP ITOPT2 15 *** NUC_MODEL INUCMO POINT [ 0] *** OCCUPATION IOCCU ESTIMATED BY SCF OPEN-SHELL IOPEN SPIN-ORBITAL[ 0] *** OPTVIB IOPTVB OFF [ 0] *** ORBITALS IORBTP STANDARD [ 0] *** PARALLEL IPARAL ON [ 1] *** PARA_INT IPINTS ON [ 1] *** PARA_PRINT IPPRIN 0 *** PERT_ORB IPTORB STANDARD [ 0] *** POINTS IGRDFD 0 *** PRINT IPRNT 0 *** PROPS IPROPS OFF [ 0] *** PROP_INTEGR IINTYP INTERNAL [ 0] *** PSI IPSI OFF [ 0] *** QC_ALG IQCALG FLM [ 0] *** QC_LINALG IQCLIN TRIDIAG [ 2] *** QC_MAXCYC IQCMAX 10D-100 cycles QC_MAXSCFCY IQCMSC 10D- 15 cycles QC_RTRUST IQCRTR 10D- 0 x 10-3 QC_SKIPSCF IQCSKI OFF [ 0] *** QC_START IQCSTA 10D- 1 *** QRHFGUESS IQGUES OFF [ 0] *** QUARTIC IQUART OFF [ 0] *** RAMAN_INT IRAMIN OFF [ 0] *** RAMAN_ORB IRAMRE UNRELAXED [ 0] *** RDO IRDOFM ON [ 1] *** REDUCE_REPR REDREP Ir [ 0] *** REFERENCE IREFNC UHF [ 1] *** RELATIVIST IRELAT OFF [ 0] *** RELAX_DENS IRDENS ON [ 1] *** RESET_FLAGS IRESET OFF [ 0] *** RESTART_CC ICCRES OFF [ 0] *** ROT_EVEC ROTVEC 0 *** SAVE_INTS ISVINT OFF [ 0] *** SCALE_ON ISTCRT 0 *** SCF_CONV ISCFCV 10D- 10 *** SCF_DAMPING IDAMP 0 x 10-3 SCF_EXPORDE IRPPOR 6 *** SCF_EXPSTAR IRPPLS 8 *** SCF_EXTRAPO IRPP ON [ 1] *** SCF_MAXCYC ISCFCY 150 cycles SCF_NOSTOP ISCFST OFF [ 0] *** SCF_PRINT ISCFPR 0 *** SCF_PROG ISCFPR SCF [ 0] *** SD_FIELD IFINSD 0 x 10-6 SOPERT IPERSO OFF [ 0] *** SPHERICAL IDFGHI ON [ 1] *** SPINORBIT ISOCAL OFF [ 0] *** SPINROTATIO ISRCON OFF [ 0] *** SPIN_FLIP ISPFLP OFF [ 0] *** SPIN_ORBIT ISPORB OFF [ 0] *** SPIN_SCAL ISCSMP OFF [ 0] *** STEEPSCALE ISTPSC 1000 x 10-3 SUBGROUP ISUBGP DEFAULT [ 0] *** SUBGRPAXIS ISBXYZ X [ 0] *** SYMMETRY ISYM ON [ 0] *** SYM_CHECK ISYMCK OVERRIDE [ 1] *** T3_EXTRAPOL IT3EXT OFF [ 0] *** T4_EXTRAPOL IT4EXP OFF [ 0] *** TAMP_SUM IEVERY 5 *** TESTSUITE ITESTS OFF [ 0] *** THERMOCH ITHERM OFF [ 0] *** TOL_CHOLESK ITOLCH 10D- 4 *** TRANGRAD IRESRM OFF [ 0] *** TRANS_INV ITRAIN IGNORE [ 1] *** TREAT_PERT ITREAT SIMULTANEOUS[ 0] *** TRIP_ALGORI ITRALG NORMAL [ 0] *** UIJ_THRESHO IUIJTH 1 *** UNITS IUNITS BOHR [ 1] *** UNOS IUNOS OFF [ 0] *** UPDATE_HESS IHUPDT ON [ 1] *** VIBPHASE ISETPH STANDARD [ 0] *** VIBRATION IVIB ANALYTIC [ 1] *** VIB_ALGORIT IGEALG STANDARD [ 0] *** VNATORB IVNORB OFF [ 0] *** VTRAN IVTRAN FULL/PARTIAL[ 0] *** XFIELD IXEFLD 0 x 10-6 XFORM_TOL IXFTOL 10D- 11 *** YFIELD IYEFLD 0 x 10-6 ZFIELD IZEFLD 0 x 10-6 ZSCALE_EXP IZEXPS OFF [ 0] *** ------------------------------------------------------------------- 1 entries found in Z-matrix Job Title : Calculation of diagonal Born-Oppenheimer corrections (DBOC) read masses from ZMAT file Rotational constants (in cm-1): Rotational constants (in MHz): ******************************************************************************** The full molecular point group is I h . The largest Abelian subgroup of the full molecular point group is D2h . The computational point group is D2h . ******************************************************************************** ECPDATA file not present. Using default ECPDATA. @GTFLGS-I, Calculation type set to UHF. There are 46 basis functions. @CHECKOUT-I, Total execution time (CPU/WALL): 0.26/ 0.42 seconds. --executable xjoda finished with status 0 in 0.51 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xvmol SERIAL VERSION OF MOLECULE STARTED ******************************************************************************** INPUT FROM MOL FILE ******************************************************************************** INTGRL 1 0 1 0 0 0 0 0 0 *** CFOUR Program System (Release V0.1) *** Calculation of diagonal Born-Oppenheimer corrections (DBOC) 1 3 X Y Z 0.10E-08 0 0 9999.00 3.00 7.00000000 1 4 1 1 1 1 N #1 0.000000000000000 0.000000000000000 0.000000000000000 11 5 11420.0000000000 5.230000000000000E-004 -1.150000000000000E-004 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1712.00000000000 4.045000000000000E-003 -8.950000000000000E-004 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 389.300000000000 2.077500000000000E-002 -4.624000000000000E-003 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 110.000000000000 8.072699999999999E-002 -1.852800000000000E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 35.5700000000000 0.233074000000000 -5.733900000000000E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 12.5400000000000 0.433501000000000 -0.132076000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.64400000000000 0.347472000000000 -0.172510000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.29300000000000 4.126200000000000E-002 0.151814000000000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.511800000000000 -8.508000000000000E-003 0.599944000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.178700000000000 2.384000000000000E-003 0.387462000000000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 5.760000000000000E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 6 4 26.6300000000000 1.467000000000000E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 5.94800000000000 9.176400000000000E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.74200000000000 0.298683000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.555000000000000 0.498487000000000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.172500000000000 0.337023000000000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 4.910000000000000E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 3 3 1.65400000000000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.469000000000000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 0.151000000000000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 2 2 1.09300000000000 1.00000000000000 0.000000000000000E+000 0.364000000000000 0.000000000000000E+000 1.00000000000000 FINISH ******************************************************************************** ONE- AND TWO-ELECTRON INTEGRALS OVER SYMMETRY-ADAPTED AOS ARE CALCULATED. SPHERICAL HARMONICS ARE USED. INTEGRALS LESS THAN 0.10E-13 ARE NEGLECTED. NUCLEAR REPULSION ENERGY : 0.0000000000 A.U. @MOLECU-I, ONE ELECTRON INTEGRALS (CPU/WALL): 0.02/ 0.02 SECONDS. @TWOEL-I, 2735 INTEGRALS OF SYMMETRY TYPE I I I I @TWOEL-I, 17264 INTEGRALS OF SYMMETRY TYPE I J I J @TWOEL-I, 11506 INTEGRALS OF SYMMETRY TYPE I I J J @TWOEL-I, 29968 INTEGRALS OF SYMMETRY TYPE I J K L @TWOEL-I, TOTAL NUMBER OF 2-E INTEGRALS 61473. @MOLECU-I, TWO ELECTRON INTEGRALS (CPU/WALL): 0.10/ 0.10 SECONDS. @CHECKOUT-I, Total execution time (CPU/WALL): 0.12/ 0.14 seconds. OMP_NUM_THREADS not specified; defaulting to 1 Running with 1 threads/proc --executable xvmol finished with status 0 in 0.20 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xvmol2ja @GETMEM-I, Allocated 19063 MB of main memory. @CHECKOUT-I, Total execution time (CPU/WALL): 0.04/ 0.02 seconds. --executable xvmol2ja finished with status 0 in 0.08 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xvscf There are 46 functions in the AO basis. There are 8 irreducible representations. Irrep # of functions 1 11 2 8 3 8 4 3 5 8 6 3 7 3 8 2 Parameters for SCF calculation: SCF reference function: UHF Maximum number of iterations: 150 Full symmetry point group: I h Computational point group: D2h Initial density matrix: CORE SCF convergence tolerance: 10**(-10) DIIS convergence acceleration: ON Latest start for DIIS: 8 DIIS order: 6 Memory information: 139288 words required. Fock matrices are constructed from AO integral file. @GETMEM-I, Allocated 1 MB of main memory. Initialization and symmetry analysis required 0.003 seconds. @INITGES-I, Occupancies from core Hamiltonian: Alpha population by irrep: 2 1 1 0 1 0 0 0 Beta population by irrep: 2 0 0 0 0 0 0 0 total no. of electrons in initial guess : 0.000000000000000E+000 total no. of electrons in initial guess : 0.000000000000000E+000 -------------------------------------------------------------------- Iteration Total Energy Largest Density Difference -------------------------------------------------------------------- 0 0.000000000000000 0.0000000000D+00 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 1 -49.835855917404594 0.6521895061D+01 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 2 -52.058457420411166 0.6437203837D+01 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 3 -54.073842648990343 0.1844959204D+01 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 4 -54.391955563143220 0.1000005765D+01 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 5 -54.400807561777690 0.1087688910D+00 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 6 -54.401124086607730 0.2781159483D-01 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 7 -54.401155253185927 0.8954503210D-02 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 8 -54.401162024980252 0.8351174572D-02 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 9 -54.401162239982561 0.7022840259D-03 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 10 -54.401162240251438 0.3931046334D-04 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 11 -54.401162240252056 0.2031012281D-05 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 12 -54.401162240252113 0.3081261479D-06 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 13 -54.401162240252120 0.1376254360D-06 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 14 -54.401162240252098 0.5654030466D-08 current occupation vector 2 1 1 0 1 0 0 0 2 0 0 0 0 0 0 0 SCF has converged. Density matrix saved to file den.dat total alpha spin electron number: 5.00000000000000 total beta spin electron number: 2.00000000000000 E(SCF)= -54.401162240252113 0.8636819038D-10 Eigenvector printing suppressed. The average multiplicity is 4.0038057 The expectation value of S**2 is 3.7576150 @PUTMOS-I, Writing converged MOs to NEWMOS. @PUTMOS-I, Symmetry 1 Full Blocks 2 Partial Blocksize 3 @PUTMOS-I, Symmetry 2 Full Blocks 2 Partial Blocksize 0 @PUTMOS-I, Symmetry 3 Full Blocks 2 Partial Blocksize 0 @PUTMOS-I, Symmetry 4 Full Blocks 0 Partial Blocksize 3 @PUTMOS-I, Symmetry 5 Full Blocks 2 Partial Blocksize 0 @PUTMOS-I, Symmetry 6 Full Blocks 0 Partial Blocksize 3 @PUTMOS-I, Symmetry 7 Full Blocks 0 Partial Blocksize 3 @PUTMOS-I, Symmetry 8 Full Blocks 0 Partial Blocksize 2 @PUTFOCK-I, Writing converged Fock matrix to NEWFOCK. @PUTFOCK-I, Symmetry 1 Full Blocks 2 Partial Blocksize 3 @PUTFOCK-I, Symmetry 2 Full Blocks 2 Partial Blocksize 0 @PUTFOCK-I, Symmetry 3 Full Blocks 2 Partial Blocksize 0 @PUTFOCK-I, Symmetry 4 Full Blocks 0 Partial Blocksize 3 @PUTFOCK-I, Symmetry 5 Full Blocks 2 Partial Blocksize 0 @PUTFOCK-I, Symmetry 6 Full Blocks 0 Partial Blocksize 3 @PUTFOCK-I, Symmetry 7 Full Blocks 0 Partial Blocksize 3 @PUTFOCK-I, Symmetry 8 Full Blocks 0 Partial Blocksize 2 ORBITAL EIGENVALUES (ALPHA) (1H = 27.2113834 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -15.6723888013 -426.4673804652 Ag Ag (1) 2 2 -1.1636007415 -31.6631859026 Ag Ag (1) 3 20 -0.5707412332 -15.5306585200 T1u B3u (3) 4 12 -0.5707412332 -15.5306585200 T1u B2u (2) 5 31 -0.5707412332 -15.5306585200 T1u B1u (5) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 6 3 0.1206463720 3.2829546854 Ag Ag (1) 7 32 0.1297229554 3.5299410757 T1u B1u (5) 8 13 0.1297229554 3.5299410757 T1u B2u (2) 9 21 0.1297229554 3.5299410757 T1u B3u (3) 10 42 0.4499815342 12.2446200507 Hg B2g (7) 11 39 0.4499815342 12.2446200507 Hg B3g (6) 12 4 0.4499815342 12.2446200507 Hg Ag (1) 13 28 0.4499815342 12.2446200507 Hg B1g (4) 14 5 0.4499815342 12.2446200507 Hg Ag (1) 15 33 0.7269091814 19.7802044313 T1u B1u (5) 16 22 0.7269091814 19.7802044313 T1u B3u (3) 17 14 0.7269091814 19.7802044313 T1u B2u (2) 18 6 0.9606200563 26.1398006545 Ag Ag (1) 19 23 1.4793581276 40.2553811972 u B3u (3) 20 34 1.4793581276 40.2553811972 u B1u (5) 21 24 1.4793581276 40.2553811972 u B3u (3) 22 45 1.4793581276 40.2553811972 u Au (8) 23 15 1.4793581276 40.2553811972 u B2u (2) 24 35 1.4793581276 40.2553811972 u B1u (5) 25 16 1.4793581276 40.2553811972 u B2u (2) 26 7 1.4915085789 40.5860117844 Hg Ag (1) 27 43 1.4915085789 40.5860117844 Hg B2g (7) 28 29 1.4915085789 40.5860117844 Hg B1g (4) 29 40 1.4915085789 40.5860117844 Hg B3g (6) 30 8 1.4915085789 40.5860117844 Hg Ag (1) 31 17 3.2753616713 89.1271222127 T1u B2u (2) 32 36 3.2753616713 89.1271222127 T1u B1u (5) 33 25 3.2753616713 89.1271222127 T1u B3u (3) 34 26 4.8281288763 131.3800659580 u B3u (3) 35 37 4.8281288763 131.3800659580 u B1u (5) 36 46 4.8281288763 131.3800659580 u Au (8) 37 27 4.8281288763 131.3800659580 u B3u (3) 38 18 4.8281288763 131.3800659580 u B2u (2) 39 19 4.8281288763 131.3800659580 u B2u (2) 40 38 4.8281288763 131.3800659580 u B1u (5) 41 9 4.9750544932 135.3781152504 Hg Ag (1) 42 44 4.9750544932 135.3781152504 Hg B2g (7) 43 10 4.9750544932 135.3781152504 Hg Ag (1) 44 41 4.9750544932 135.3781152504 Hg B3g (6) 45 30 4.9750544932 135.3781152504 Hg B1g (4) 46 11 6.2843866596 171.0068548273 Ag Ag (1) ORBITAL EIGENVALUES ( BETA) (1H = 27.2113834 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -15.5827097314 -424.0270889108 Ag Ag (1) 2 2 -0.7269454961 -19.7811926047 Ag Ag (1) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 20 0.0770067501 2.0954602001 T1u B3u (3) 4 12 0.0770067501 2.0954602001 T1u B2u (2) 5 31 0.0770067501 2.0954602001 T1u B1u (5) 6 3 0.1406289949 3.8267094980 Ag Ag (1) 7 13 0.2257800688 6.1437880161 T1u B2u (2) 8 21 0.2257800688 6.1437880161 T1u B3u (3) 9 32 0.2257800688 6.1437880161 T1u B1u (5) 10 42 0.4784995578 13.0206349239 Hg B2g (7) 11 4 0.4784995578 13.0206349239 Hg Ag (1) 12 39 0.4784995578 13.0206349239 Hg B3g (6) 13 28 0.4784995578 13.0206349239 Hg B1g (4) 14 5 0.4784995578 13.0206349239 Hg Ag (1) 15 33 0.8807074941 23.9652692861 T1u B1u (5) 16 22 0.8807074941 23.9652692861 T1u B3u (3) 17 14 0.8807074941 23.9652692861 T1u B2u (2) 18 6 1.0642631500 28.9600726139 Ag Ag (1) 19 34 1.5132361109 41.1772479892 u B1u (5) 20 23 1.5132361109 41.1772479892 u B3u (3) 21 24 1.5132361109 41.1772479892 u B3u (3) 22 45 1.5132361109 41.1772479892 u Au (8) 23 15 1.5132361109 41.1772479892 u B2u (2) 24 35 1.5132361109 41.1772479892 u B1u (5) 25 16 1.5132361109 41.1772479892 u B2u (2) 26 40 1.6273459195 44.2823337401 Hg B3g (6) 27 7 1.6273459195 44.2823337401 Hg Ag (1) 28 43 1.6273459195 44.2823337401 Hg B2g (7) 29 29 1.6273459195 44.2823337401 Hg B1g (4) 30 8 1.6273459195 44.2823337401 Hg Ag (1) 31 17 3.4328091927 93.4114870826 T1u B2u (2) 32 25 3.4328091927 93.4114870826 T1u B3u (3) 33 36 3.4328091927 93.4114870826 T1u B1u (5) 34 37 4.9274758658 134.0834349784 u B1u (5) 35 26 4.9274758658 134.0834349784 u B3u (3) 36 46 4.9274758658 134.0834349784 u Au (8) 37 27 4.9274758658 134.0834349784 u B3u (3) 38 18 4.9274758658 134.0834349784 u B2u (2) 39 19 4.9274758658 134.0834349784 u B2u (2) 40 38 4.9274758658 134.0834349784 u B1u (5) 41 9 5.1467256275 140.0495243048 Hg Ag (1) 42 10 5.1467256275 140.0495243048 Hg Ag (1) 43 44 5.1467256275 140.0495243048 Hg B2g (7) 44 41 5.1467256275 140.0495243048 Hg B3g (6) 45 30 5.1467256275 140.0495243048 Hg B1g (4) 46 11 6.3897158146 173.8730068482 Ag Ag (1) VSCF finished. @CHECKOUT-I, Total execution time (CPU/WALL): 1.58/ 0.48 seconds. --executable xvscf finished with status 0 in 0.56 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xvtran @GETMEM-I, Allocated 19063 MB of main memory. Full UHF integral transformation Transformation of IIII integrals : 2 passes through the AO integral file were required. 2735 AO integrals were read. 3977 MO integrals (Spin case AAAA) were written to HF2AA. 3971 MO integrals (Spin case BBBB) were written to HF2BB. 7917 MO integrals (Spin case AABB) were written to HF2AB. Transformation of IIJJ integrals : 2 passes through the AO integral file were required. 11506 AO integrals were read. 14519 MO integrals (Spin case AAAA) were written to HF2AA. 14578 MO integrals (Spin case BBBB) were written to HF2BB. 29089 MO integrals (Spin case AABB) were written to HF2AB. Transformation of IJIJ integrals : 2 passes through the AO integral file were required. 17264 AO integrals were read. 22458 MO integrals (Spin case AAAA) were written to HF2AA. 22611 MO integrals (Spin case BBBB) were written to HF2BB. 44453 MO integrals (Spin case AABB) were written to HF2AB. Transformation of IJKL integrals : 2 passes through the AO integral file were required. 29968 AO integrals were read. 33600 MO integrals (Spin case AAAA) were written to HF2AA. 33795 MO integrals (Spin case BBBB) were written to HF2BB. 67395 MO integrals (Spin case AABB) were written to HF2AB. Summary of active molecular orbitals: ------------------------------------------------------------------------ * Spin case alpha * Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -15.6723888 1 24 1.4793581 3 2 -1.1636007 1 25 1.4793581 3 3 -0.5707412 2 26 3.2753617 3 4 -0.5707412 3 27 4.8281289 3 5 -0.5707412 5 28 4.8281289 3 6 0.1206464 1 29 0.4499815 4 7 0.4499815 1 30 1.4915086 4 8 0.4499815 1 31 4.9750545 4 9 0.9606201 1 32 0.1297230 5 10 1.4915086 1 33 0.7269092 5 11 1.4915086 1 34 1.4793581 5 12 4.9750545 1 35 1.4793581 5 13 4.9750545 1 36 3.2753617 5 14 6.2843867 1 37 4.8281289 5 15 0.1297230 2 38 4.8281289 5 16 0.7269092 2 39 0.4499815 6 17 1.4793581 2 40 1.4915086 6 18 1.4793581 2 41 4.9750545 6 19 3.2753617 2 42 0.4499815 7 20 4.8281289 2 43 1.4915086 7 21 4.8281289 2 44 4.9750545 7 22 0.1297230 3 45 1.4793581 8 23 0.7269092 3 46 4.8281289 8 ------------------------------------------------------------------------ ------------------------------------------------------------------------ * Spin case beta * Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -15.5827097 1 24 1.5132361 3 2 -0.7269455 1 25 3.4328092 3 3 0.1406290 1 26 4.9274759 3 4 0.4784996 1 27 4.9274759 3 5 0.4784996 1 28 0.4784996 4 6 1.0642632 1 29 1.6273459 4 7 1.6273459 1 30 5.1467256 4 8 1.6273459 1 31 0.0770068 5 9 5.1467256 1 32 0.2257801 5 10 5.1467256 1 33 0.8807075 5 11 6.3897158 1 34 1.5132361 5 12 0.0770068 2 35 1.5132361 5 13 0.2257801 2 36 3.4328092 5 14 0.8807075 2 37 4.9274759 5 15 1.5132361 2 38 4.9274759 5 16 1.5132361 2 39 0.4784996 6 17 3.4328092 2 40 1.6273459 6 18 4.9274759 2 41 5.1467256 6 19 4.9274759 2 42 0.4784996 7 20 0.0770068 3 43 1.6273459 7 21 0.2257801 3 44 5.1467256 7 22 0.8807075 3 45 1.5132361 8 23 1.5132361 3 46 4.9274759 8 ------------------------------------------------------------------------ -15.6723888012685 -1.16360074153959 -0.570741233244015 -0.570741233244016 -0.570741233244015 0.120646372040913 0.449981534223112 0.449981534223113 0.960620056330902 1.49150857888445 1.49150857888446 4.97505449320240 4.97505449320241 6.28438665956788 0.129722955419963 0.726909181371640 1.47935812764212 1.47935812764213 3.27536167134837 4.82812887631420 4.82812887631421 0.129722955419963 0.726909181371632 1.47935812764212 1.47935812764212 3.27536167134851 4.82812887631418 4.82812887631419 0.449981534223112 1.49150857888445 4.97505449320242 0.129722955419963 0.726909181371630 1.47935812764212 1.47935812764212 3.27536167134847 4.82812887631418 4.82812887631422 0.449981534223111 1.49150857888445 4.97505449320242 0.449981534223110 1.49150857888445 4.97505449320241 1.47935812764212 4.82812887631419 -15.5827097313556 -0.726945496078167 0.140628994921982 0.478499557794113 0.478499557794115 1.06426315002927 1.62734591950765 1.62734591950765 5.14672562751010 5.14672562751011 6.38971581460439 7.700675005368153E-002 0.225780068796207 0.880707494132337 1.51323611092790 1.51323611092791 3.43280919273767 4.92747586579535 4.92747586579536 7.700675005368141E-002 0.225780068796210 0.880707494132332 1.51323611092790 1.51323611092790 3.43280919273769 4.92747586579534 4.92747586579535 0.478499557794114 1.62734591950765 5.14672562751011 7.700675005368197E-002 0.225780068796211 0.880707494132328 1.51323611092790 1.51323611092790 3.43280919273771 4.92747586579534 4.92747586579536 0.478499557794114 1.62734591950764 5.14672562751011 0.478499557794112 1.62734591950765 5.14672562751011 1.51323611092790 4.92747586579534 @CHECKOUT-I, Total execution time (CPU/WALL): 0.10/ 0.16 seconds. --executable xvtran finished with status 0 in 0.23 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xintprc @GETMEM-I, Allocated 19063 MB of main memory. Processing integrals for CCSD calculation. @GMOIAA-I, Processing MO integrals for spin case AA. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 47182 PPPH 22310 PPHH 2784 PHPH 1793 PHHH 452 HHHH 33 TOTAL 74554 @GMOIAA-I, Processing MO integrals for spin case BB. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 62836 PPPH 11067 PPHH 536 PHPH 468 PHHH 42 HHHH 6 TOTAL 74955 @GMOIAB-I, Processing MO integrals for spin case AB. TYPE NUMBER ---- -------- PPPP 108094 PPPH1H 25944 PPPH2H 9676 PPHH 2341 PHPH1P 401 PHPH2P 2078 PHHH1P 105 PHHH2P 197 HHHH 18 TOTAL 148854 @FORMT2-I, Second-order MP correlation energies: ------------------------------------------------ E(SCF) = -54.401162240252 a.u. E2(AA) = -0.031435602268 a.u. E2(BB) = -0.000264906826 a.u. E2(AB) = -0.076403920492 a.u. E2(TOT) = -0.108104429585 a.u. Total MP2 energy = -54.509266669838 a.u. ------------------------------------------------ ---------------------------------------------- Projected spin multiplicities: ---------------------------------------------- <0|S^2|0> = 3.7576149573. <0|S^2 T2|0> = -0.0025123483. Projected <0|S^2 exp(T)|0> = 3.7551026090. Approximate spin mult. = 4.0025504914. ---------------------------------------------- Largest T2 amplitudes for spin case AA: i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 3 23 16]-0.02091 [ 5 3 33 16]-0.02091 [ 5 4 33 23]-0.02091 [ 4 3 30 10] 0.01703 [ 5 4 43 11] 0.01484 [ 5 3 40 11] 0.01466 [ 3 2 16 9]-0.01229 [ 4 2 23 9]-0.01229 [ 5 2 33 9]-0.01229 [ 5 3 32 16]-0.01070 [ 5 4 32 23]-0.01070 [ 4 3 23 15]-0.01070 [ 5 3 33 15]-0.01070 [ 4 3 22 16]-0.01070 [ 5 4 33 22]-0.01070 ----------------------------------------------------------------------------- Norm of T2AA vector ( 1072 symmetry allowed elements): 0.0852002550. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case BB: i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 2 1 36 32]-0.00136 [ 2 1 17 13]-0.00136 [ 2 1 25 21]-0.00136 [ 2 1 36 33]-0.00123 [ 2 1 25 22]-0.00123 [ 2 1 17 14]-0.00123 [ 2 1 25 20]-0.00091 [ 2 1 17 12]-0.00091 [ 2 1 36 31]-0.00091 [ 2 1 11 6] 0.00032 [ 2 1 14 13]-0.00026 [ 2 1 22 21]-0.00026 [ 2 1 33 32]-0.00026 [ 2 1 14 12]-0.00023 [ 2 1 33 31]-0.00023 ----------------------------------------------------------------------------- Norm of T2BB vector ( 130 symmetry allowed elements): 0.0036264177. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 3 2 16 6] 0.02284 [ 5 2 33 6] 0.02284 [ 4 2 23 6] 0.02284 [ 5 2 11 32] 0.02250 [ 3 2 10 13]-0.01961 [ 4 2 43 32] 0.01949 [ 4 2 30 13] 0.01949 [ 5 2 40 13] 0.01949 [ 5 2 43 21] 0.01949 [ 3 2 40 32] 0.01949 [ 3 2 30 21] 0.01949 [ 4 2 10 21] 0.01937 [ 2 2 9 6] 0.01793 [ 5 2 11 31] 0.01685 [ 3 2 16 3]-0.01478 ----------------------------------------------------------------------------- Norm of T2AB vector ( 2542 symmetry allowed elements): 0.1365195609. ----------------------------------------------------------------------------- @CHECKOUT-I, Total execution time (CPU/WALL): 0.34/ 0.32 seconds. --executable xintprc finished with status 0 in 0.39 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xint @GETMEM-I, Allocated 19063 MB of main memory. itot is 0 using new mrcc fort.57 fort.56 2 0 0 0 1 4 0 8 0 0 0 1 1 0 0 10 0 0 0.00000 1 19064 0 0 ex.lev,nsing,ntrip, rest,CC/CI, dens,conver, symm, diag, CS ,spatial, HF ,ndoub,nacto,nactv, tol ,maxex, sacc, freq, dboc, mem @CHECKOUT-I, Total execution time (CPU/WALL): 0.90/ 0.95 seconds. --executable xint finished with status 0 in 1.05 seconds (walltime). --invoking executable-- /home/rkorol/Software/mrcc/dmrcc ********************************************************************** MRCC program system ********************************************************************** Written by Mihaly Kallay, Peter R. Nagy, David Mester, Laszlo Gyevi-Nagy, Jozsef Csoka, P. Bernat Szabo, Zoltan Rolik, Gyula Samu, Jozsef Csontos, Bence Hegely, Adam Ganyecz, Istvan Ladjanszki, Lorant Szegedy, Bence Ladoczki, Klara Petrov, Mate Farkas, Pal D. Mezei, and Reka A. Horvath Department of Physical Chemistry and Materials Science Budapest University of Technology and Economics Budapest P.O.Box 91, H-1521 Hungary www.mrcc.hu Release date: March 18, 2022 ************************ 2023-07-18 10:23:38 ************************* Executing goldstone... Generation of CC equations in terms of H and T... Generation of antisymmetrized Goldstone diagrams... Number of diagrams in T^1 equations: 14 Number of diagrams in T^2 equations: 31 Translation of diagrams to factorized equations... Optimizing intermediate calculation... Optimizing right-hand EOMCC calculation... Optimizing left-hand EOMCC calculation... Optimizing density-matrix calculation... Optimizing perturbed lambda equations... Optimizing perturbed density calculation... Number of floating-point operations per iteration step: 7.8221E+06 Probable CPU time per iteration step (hours): 0.00 Required memory (Mbytes): 432.5 Number of intermediates: 289 Number of intermediates to be stored: 92 Length of intermediate file (Mbytes): 13.3 ************************ 2023-07-18 10:23:38 ************************* Executing xmrcc... ********************************************************************** CC( 2 ) calculation Allocation of****** Mbytes of memory... Number of spinorbitals: 92 Number of alpha electrons: 5 Number of beta electrons: 2 Spin multiplicity: 2 z-component of spin: 1.5 Spatial symmetry: 8 Convergence criterion: 1.0E-10 Construction of occupation graphs... Number of 0 -fold excitations: 1 Number of 1 -fold excitations: 57 Number of 2 -fold excitations: 3744 Total number of configurations: 3802 Calculation of coupling coefficients... Length of intermediate file (Mbytes): 9.6 ====================================================================== ====================================================================== Memory requirements /Mbyte/: Minimal Optimal Real*8: 28.8844 46.8938 Integer: 6.9017 Total: 35.7862 53.7955 ************************ 2023-07-18 10:23:39 ************************* Executing mrcc... ********************************************************************** CCSD analytic second derivative calculation OpenMP parallel version is running. Number of CPU cores: 5 Allocation of 46.9 Mbytes of memory... Number of spinorbitals: 92 Number of alpha electrons: 5 Number of beta electrons: 2 Spin multiplicity: 2 z-component of spin: 1.5 Spatial symmetry: 8 Convergence criterion: 1.0E-10 Construction of occupation graphs... Number of 0-fold excitations: 1 Number of 1-fold excitations: 57 Number of 2-fold excitations: 3744 Total number of determinants: 3802 Calculation of coupling coefficients... Initial cluster amplitudes are generated. Length of intermediate file (Mbytes): 9.6 Reading integral list from unit 55... Sorting integrals... Sorting integrals... Sorting integrals... Sorting integrals... Energy of reference determinant [au]: -54.401162240252 Calculation of diagonal elements of Hamiltonian... Calculation of MP denominators... Starting CC iteration... ====================================================================== Norm of residual vector: 0.90769626 CPU time [min]: 0.070 Wall time [min]: 0.041 Iteration 1 CC energy: -54.50926667 Energy decrease: 0.10810443 ====================================================================== Norm of residual vector: 0.10197959 CPU time [min]: 0.089 Wall time [min]: 0.047 Iteration 2 CC energy: -54.52307730 Energy decrease: 0.01381063 ====================================================================== Norm of residual vector: 0.02338035 CPU time [min]: 0.105 Wall time [min]: 0.052 Iteration 3 CC energy: -54.52469793 Energy decrease: 0.00162063 ====================================================================== Norm of residual vector: 0.00524318 CPU time [min]: 0.121 Wall time [min]: 0.058 Iteration 4 CC energy: -54.52490212 Energy decrease: 0.00020419 ====================================================================== Norm of residual vector: 0.00172323 CPU time [min]: 0.136 Wall time [min]: 0.063 Iteration 5 CC energy: -54.52487594 Energy decrease: 0.00002618 ====================================================================== Norm of residual vector: 0.00055986 CPU time [min]: 0.152 Wall time [min]: 0.068 Iteration 6 CC energy: -54.52487783 Energy decrease: 0.00000189 ====================================================================== Norm of residual vector: 0.00014987 CPU time [min]: 0.168 Wall time [min]: 0.074 Iteration 7 CC energy: -54.52488313 Energy decrease: 0.00000530 ====================================================================== Norm of residual vector: 0.00003318 CPU time [min]: 0.189 Wall time [min]: 0.079 Iteration 8 CC energy: -54.52488250 Energy decrease: 0.00000062 ====================================================================== Norm of residual vector: 0.00000536 CPU time [min]: 0.210 Wall time [min]: 0.084 Iteration 9 CC energy: -54.52488252 Energy decrease: 0.00000001 ====================================================================== Norm of residual vector: 0.00000144 CPU time [min]: 0.231 Wall time [min]: 0.089 Iteration 10 CC energy: -54.52488257 Energy decrease: 0.00000005 ====================================================================== Norm of residual vector: 0.00000026 CPU time [min]: 0.252 Wall time [min]: 0.095 Iteration 11 CC energy: -54.52488256 Energy decrease: 4.4667E-09 ====================================================================== Norm of residual vector: 0.00000005 CPU time [min]: 0.275 Wall time [min]: 0.101 Iteration 12 CC energy: -54.52488256 Energy decrease: 2.3969E-10 ====================================================================== Norm of residual vector: 0.00000001 CPU time [min]: 0.299 Wall time [min]: 0.106 Iteration 13 CC energy: -54.52488256 Energy decrease: 1.2231E-10 ====================================================================== Norm of residual vector: 2.0046E-09 CPU time [min]: 0.329 Wall time [min]: 0.114 Iteration 14 CC energy: -54.52488256 Energy decrease: 4.4551E-12 ====================================================================== Norm of residual vector: 4.2945E-10 CPU time [min]: 0.352 Wall time [min]: 0.120 Iteration 15 CC energy: -54.52488256 Energy decrease: 2.0606E-12 ====================================================================== Norm of residual vector: 8.1426E-11 CPU time [min]: 0.388 Wall time [min]: 0.130 Iteration 16 CC energy: -54.52488256 Energy decrease: 1.3713E-12 ====================================================================== Iteration has converged in 16 steps. Final results: Total CCSD energy [au]: -54.524882560589 Total MP2 energy [au]: -54.509266669838 Starting left-hand LR-CC iteration for root 1 ... ====================================================================== Norm of residual vector: 0.90769839 CPU time [min]: 0.437 Wall time [min]: 0.142 Iteration 1 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.12408142 CPU time [min]: 0.492 Wall time [min]: 0.156 Iteration 2 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.01388129 CPU time [min]: 0.541 Wall time [min]: 0.169 Iteration 3 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00371224 CPU time [min]: 0.599 Wall time [min]: 0.184 Iteration 4 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00107132 CPU time [min]: 0.651 Wall time [min]: 0.198 Iteration 5 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00033922 CPU time [min]: 0.704 Wall time [min]: 0.212 Iteration 6 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00007586 CPU time [min]: 0.752 Wall time [min]: 0.224 Iteration 7 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00001646 CPU time [min]: 0.808 Wall time [min]: 0.238 Iteration 8 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00000355 CPU time [min]: 0.853 Wall time [min]: 0.250 Iteration 9 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00000091 CPU time [min]: 0.900 Wall time [min]: 0.261 Iteration 10 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00000017 CPU time [min]: 0.945 Wall time [min]: 0.273 Iteration 11 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00000002 CPU time [min]: 0.992 Wall time [min]: 0.285 Iteration 12 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 0.00000001 CPU time [min]: 1.051 Wall time [min]: 0.300 Iteration 13 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 9.4479E-10 CPU time [min]: 1.102 Wall time [min]: 0.313 Iteration 14 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 1.8758E-10 CPU time [min]: 1.155 Wall time [min]: 0.327 Iteration 15 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Norm of residual vector: 4.5801E-11 CPU time [min]: 1.210 Wall time [min]: 0.342 Iteration 16 CI energy: -54.52488256 Energy decrease: 0.0000E+00 ====================================================================== Iteration has converged in 16 steps. Final results: Total CCSD energy [au]: -54.524882560589 Calculating reduced density-matrix for root 1... Total energy from RDM [au]: -54.524882560589 ************************ 2023-07-18 10:24:18 ************************* Normal termination of mrcc. ********************************************************************** --executable dmrcc finished with status 0 in 40.73 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xdens @GETMEM-I, Allocated 19063 MB of main memory. CCSD density and intermediates are calculated. Unrelaxed density for DBOC is calculated sort for dboc ---------------------------------------------------------------------- Natural orbital occupation numbers ---------------------------------------------------------------------- Alpha spin ---------------------------------------------------------------------- 0.99975 0.99424 0.98676 0.98676 0.98676 0.00487 0.00487 0.00487 0.00482 0.00482 0.00482 0.00482 0.00482 0.00396 0.00030 0.00030 0.00030 0.00025 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00011 0.00011 0.00011 0.00011 0.00011 0.00004 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 Trace of density matrix : 5.0000000000. ---------------------------------------------------------------------- Beta spin ---------------------------------------------------------------------- 0.99974 0.97207 0.00676 0.00676 0.00676 0.00434 0.00036 0.00036 0.00036 0.00036 0.00036 0.00028 0.00028 0.00028 0.00016 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Trace of density matrix : 2.0000000000. ---------------------------------------------------------------------- Density calculation successfully completed. @CHECKOUT-I, Total execution time (CPU/WALL): 0.73/ 0.78 seconds. --executable xdens finished with status 0 in 0.84 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xvdint @GETMEM-I, Allocated 19063 MB of main memory. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. magnet F F Integrals for DBOC will be evaluated First contribution to E(DBOC): 0.00000 cm-1 Second contribution to E(DBOC): -468.22890 cm-1 Evaluation of 1e integral derivatives required 0.13 seconds. Evaluation of 2el integral derivatives Evaluation of 2e integral derivatives required 0.01 seconds. @CHECKOUT-I, Total execution time (CPU/WALL): 0.11/ 0.11 seconds. --executable xvdint finished with status 0 in 0.19 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xcphf @GETMEM-I, Allocated 19063 MB of main memory. Coupled-perturbed HF (CPHF) equations are solved for UHF-CC/MBPT hessian and dipole derivatives. irreducible representation Nr. 1 # geometric perturbations 0 irreducible representation Nr. 2 # geometric perturbations 1 irreducible representation Nr. 3 # geometric perturbations 1 irreducible representation Nr. 4 # geometric perturbations 0 irreducible representation Nr. 5 # geometric perturbations 1 irreducible representation Nr. 6 # geometric perturbations 0 irreducible representation Nr. 7 # geometric perturbations 0 irreducible representation Nr. 8 # geometric perturbations 0 There are 2 perturbations within irrep 2. Warning form lineq2 : the initial vector is zero. CPHF converged after 16 iterations. There are 2 perturbations within irrep 3. Warning form lineq2 : the initial vector is zero. CPHF converged after 16 iterations. There are 2 perturbations within irrep 5. Warning form lineq2 : the initial vector is zero. CPHF converged after 16 iterations. SCF static dipole polarizability -------------------------------- Ex Ey Ez Ex 7.113379 0.000000 0.000000 Ey 0.000000 7.113379 0.000000 Ez 0.000000 0.000000 7.113379 SCF static dipole hyperpolarizability ------------------------------------- Ex Ey Ez xx 0.000000 0.000000 0.000000 xy 0.000000 0.000000 0.000000 xz 0.000000 0.000000 0.000000 yy 0.000000 0.000000 0.000000 yz 0.000000 0.000000 0.000000 zz 0.000000 0.000000 0.000000 Diagonal Born-Oppenheimer Correction ------------------------------------ HF-SCF 1-el contribution to DBOC is : 0.000000 cm-1 Correlated 1-el contribtion to DBOC is: 0.000000 cm-1 HF-SCF 2-el contribution to DBOC is : -27.703952 cm-1 Correlated 2-el contribtion to DBOC is: 5.506147 cm-1 @CHECKOUT-I, Total execution time (CPU/WALL): 0.24/ 0.25 seconds. --executable xcphf finished with status 0 in 0.31 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xsdcc @GETMEM-I, Allocated 19063 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. External CC code used, step: 1 CPHF coefficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 0 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 80055 MO integral derivatives were written to file DERINT. 3 passes through the AO integral derivative file were needed. 0 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 15224 MO integral derivatives were written to file DERINT. Transformation of DIIJK integral derivatives. 2 passes through the AO integral derivative file were needed. 0 AO integral derivatives were read from file DIIJK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 149392 MO integral derivatives were written to file DERINT. 2 passes through the AO integral derivative file were needed. 0 AO integral derivatives were read from file DIIJK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 53484 MO integral derivatives were written to file DERINT. Transformation of DIJIK integral derivatives. 2 passes through the AO integral derivative file were needed. 0 AO integral derivatives were read from file DIJIK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 232754 MO integral derivatives were written to file DERINT. 2 passes through the AO integral derivative file were needed. 0 AO integral derivatives were read from file DIJIK. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 33888 MO integral derivatives were written to file DERINT. Transformation of DIJKL integral derivatives. 1 pass through the AO integral derivative file was needed. 0 AO integral derivatives were read from file DIJKL. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 182314 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 0 AO integral derivatives were read from file DIJKL. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 65040 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 1) ABSPERT 2 1 1 0 XW Perturbed integrals stored on unit 55 for use within external CC programs. list 311 2 1 2 list 311 2 2 1 list 311 2 2 1 list 311 2 1 2 list 311 2 2 1 list 311 2 1 2 list 311 0 1 0 list 311 0 0 1 list 307 78 39 2 list 307 29 29 1 list 307 29 29 1 list 307 44 22 2 list 307 29 29 1 list 307 44 22 2 list 307 0 22 0 list 307 13 13 1 list 314 111 1 111 list 314 218 2 109 list 314 198 2 99 list 314 111 1 111 list 314 198 2 99 list 314 111 1 111 list 314 81 1 81 list 314 0 0 99 list 327 4329 39 111 list 327 3161 29 109 list 327 2871 29 99 list 327 2442 22 111 list 327 2871 29 99 list 327 2442 22 111 list 327 1782 22 81 list 327 1287 13 99 list 331 12099 109 111 list 331 12099 111 109 list 331 10989 111 99 list 331 10989 99 111 list 331 10989 111 99 list 331 10989 99 111 list 331 8019 99 81 list 331 8019 81 99 list 312 0 1 0 list 312 0 0 1 list 312 0 0 0 list 312 0 0 0 list 312 0 0 0 list 312 0 0 0 list 312 0 0 0 list 312 0 0 0 list 308 0 18 0 list 308 16 16 1 list 308 0 16 0 list 308 0 6 0 list 308 0 16 0 list 308 0 6 0 list 308 0 6 0 list 308 0 4 0 list 315 126 1 126 list 315 0 0 130 list 315 0 0 116 list 315 0 0 126 list 315 0 0 116 list 315 0 0 126 list 315 0 0 90 list 315 0 0 116 list 328 2268 18 126 list 328 2080 16 130 list 328 1856 16 116 list 328 756 6 126 list 328 1856 16 116 list 328 756 6 126 list 328 540 6 90 list 328 464 4 116 list 332 16380 130 126 list 332 16380 126 130 list 332 14616 126 116 list 332 14616 116 126 list 332 14616 126 116 list 332 14616 116 126 list 332 10440 116 90 list 332 10440 90 116 @CHECKOUT-I, Total execution time (CPU/WALL): 2.75/ 3.54 seconds. --executable xsdcc finished with status 0 in 3.64 seconds (walltime). --invoking executable-- /home/rkorol/Software/mrcc/dmrcc ********************************************************************** MRCC program system ********************************************************************** Written by Mihaly Kallay, Peter R. Nagy, David Mester, Laszlo Gyevi-Nagy, Jozsef Csoka, P. Bernat Szabo, Zoltan Rolik, Gyula Samu, Jozsef Csontos, Bence Hegely, Adam Ganyecz, Istvan Ladjanszki, Lorant Szegedy, Bence Ladoczki, Klara Petrov, Mate Farkas, Pal D. Mezei, and Reka A. Horvath Department of Physical Chemistry and Materials Science Budapest University of Technology and Economics Budapest P.O.Box 91, H-1521 Hungary www.mrcc.hu Release date: March 18, 2022 ************************ 2023-07-18 10:24:23 ************************* Executing goldstone... Generation of CC equations in terms of H and T... Generation of antisymmetrized Goldstone diagrams... Number of diagrams in T^1 equations: 14 Number of diagrams in T^2 equations: 31 Translation of diagrams to factorized equations... Optimizing intermediate calculation... Optimizing right-hand EOMCC calculation... Optimizing left-hand EOMCC calculation... Optimizing density-matrix calculation... Optimizing perturbed lambda equations... Optimizing perturbed density calculation... Number of floating-point operations per iteration step: 7.8221E+06 Probable CPU time per iteration step (hours): 0.00 Required memory (Mbytes): 432.5 Number of intermediates: 289 Number of intermediates to be stored: 92 Length of intermediate file (Mbytes): 13.3 ************************ 2023-07-18 10:24:24 ************************* Executing xmrcc... ********************************************************************** CC( 2 ) calculation Allocation of****** Mbytes of memory... Number of spinorbitals: 92 Number of alpha electrons: 5 Number of beta electrons: 2 Spin multiplicity: 2 z-component of spin: 1.5 Spatial symmetry: 8 Convergence criterion: 1.0E-10 Symmetry of perturbation: 2 Construction of occupation graphs... Number of perturbed amplitudes: Number of 0 -fold excitations: 0 Number of 1 -fold excitations: 45 Number of 2 -fold excitations: 3518 Total number of configurations: 3563 Number of ground state excitations: Number of 0 -fold excitations: 1 Number of 1 -fold excitations: 57 Number of 2 -fold excitations: 3744 Total number of configurations: 3802 Calculation of coupling coefficients... Length of intermediate file (Mbytes): 17.7 Calculation of the term... Calculation of the <0|(1+L) exp(-T) dH/dx exp(T)|K> term... ====================================================================== Calculation of the <0|(1+L)[exp(-T) H exp(T), dT/dx]|K> term... Calculation of the <0|(1+L)[exp(-T){p+q-}exp(T), dT/dx]|0> term... ====================================================================== Memory requirements /Mbyte/: Minimal Optimal Real*8: 28.5577 46.7486 Integer: 6.9020 Total: 35.4597 53.6505 ************************ 2023-07-18 10:24:24 ************************* Executing mrcc... ********************************************************************** CCSD analytic second derivative calculation OpenMP parallel version is running. Number of CPU cores: 5 Allocation of 46.7 Mbytes of memory... Number of spinorbitals: 92 Number of alpha electrons: 5 Number of beta electrons: 2 Spin multiplicity: 2 z-component of spin: 1.5 Spatial symmetry: 8 Convergence criterion: 1.0E-10 Symmetry of perturbation 1: 2 Construction of occupation graphs... Number of excitations for irrep 1: Number of 0-fold excitations: 1 Number of 1-fold excitations: 57 Number of 2-fold excitations: 3744 Total number of determinants: 3802 Number of excitations for irrep 2: Number of 0-fold excitations: 0 Number of 1-fold excitations: 45 Number of 2-fold excitations: 3518 Total number of determinants: 3563 Calculation of coupling coefficients... Initial perturbed amplitudes are generated. Length of intermediate file (Mbytes): 17.7 Reading integral list from unit 55... Sorting integrals... Sorting integrals... Sorting integrals... Sorting integrals... Derivative of reference energy [au]: 0.000000000000 Calculation of MP denominators... Correlation energy [au]: -0.12372032 Derivative of correlation energy [au]: 0.00000000 Calculation of the term... Calculation of the <0|(1+L) exp(-T) dH/dx exp(T)|K> term... Starting right-hand LR-CC iteration for root 1 ... ====================================================================== Norm of residual vector: 0.0000E+00 Convergence: 1.0000E+00 CPU time [min]: 0.102 Wall time [min]: 0.049 Iteration 1 CI energy: 0.00000000 Energy decrease: 0.0000E+00 ====================================================================== Iteration has converged in 1 steps. Final results: Total CCSD energy [au]: 0.000000000000 Calculation of the <0|(1+L)[exp(-T) H exp(T), dT/dx]|K> term... Calculation of the <0|(1+L)[exp(-T){p+q-}exp(T), dT/dx]|0> term... Starting left-hand LR-CC iteration for root 1 ... ====================================================================== Norm of residual vector: 0.0000E+00 CPU time [min]: 0.782 Wall time [min]: 0.276 Iteration 1 CI energy: 0.00000000 Energy decrease: 0.0000E+00 ====================================================================== Iteration has converged in 1 steps. Final results: Total CCSD energy [au]: 0.000000000000 Calculating reduced density-matrix for root 1... Total energy from RDM [au]: 0.000000000000 ************************ 2023-07-18 10:25:03 ************************* Normal termination of mrcc. ********************************************************************** --executable dmrcc finished with status 0 in 39.68 seconds (walltime). --invoking executable-- /home/rkorol/Software/cfour/bin/xsdcc @GETMEM-I, Allocated 19063 MB of main memory. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. External CC code used, step: 2 CPHF coefficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coefficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) enter routine DINTERF2 to read perturbed DBOC densities generated from external sources 0.000000000000000E+000 D(I,J) D(i,j) nirrep 8 oo 0.000000000000000E+000 vv 0.000000000000000E+000 vo 0.000000000000000E+000 Correlated perturbed 1-el contribution to DBOC 0.000000000000000E+000 cm**-1 SUM_I |dc_I/dx|^2 contribution to DBOC 0.000000000000000E+000 cm**-1 current total DBOC 446.031095213885 cm**-1 enter routine DINTERF to read perturbed densities generated from external sources iuhf 1 enetr inidgam1 exut inidgam1 perturbed two-particle density matrices G(IJ,KL) G(IJ,KL) i,j,k,l 1 2 8 list 411 2 1 2 2 1 8 list 411 2 2 1 3 4 8 list 411 2 2 1 4 3 8 list 411 2 1 2 5 6 8 list 411 2 2 1 6 5 8 list 411 2 1 2 7 8 8 list 411 0 1 0 8 7 8 list 411 0 0 1 G(ij,kl) G(ij,kl) i,j,k,l 1 2 8 list 412 0 1 0 2 1 8 list 412 0 0 1 3 4 8 list 412 0 0 0 4 3 8 list 412 0 0 0 5 6 8 list 412 0 0 0 6 5 8 list 412 0 0 0 7 8 8 list 412 0 0 0 8 7 8 list 412 0 0 0 G(Ij,Kl) G(Ij,Kl) i,j,k,l 1 2 8 list 413 8 4 2 2 1 8 list 413 8 2 4 3 4 8 list 413 0 2 0 4 3 8 list 413 0 0 2 5 6 8 list 413 0 2 0 6 5 8 list 413 0 0 2 7 8 8 list 413 0 0 0 8 7 8 list 413 0 0 0 G(IJ,KA) G(IJ,KA) i,j,k,a 1 2 8 list 407 78 39 2 2 1 8 list 407 29 29 1 3 4 8 list 407 29 29 1 4 3 8 list 407 44 22 2 5 6 8 list 407 29 29 1 6 5 8 list 407 44 22 2 7 8 8 list 407 0 22 0 8 7 8 list 407 13 13 1 G(ij,ka) G(iJ,ka) i,j,k,a 1 2 8 list 408 0 18 0 2 1 8 list 408 16 16 1 3 4 8 list 408 0 16 0 4 3 8 list 408 0 6 0 5 6 8 list 408 0 16 0 6 5 8 list 408 0 6 0 7 8 8 list 408 0 6 0 8 7 8 list 408 0 4 0 G(Ij,Ak) G(Ij,Ak) i,j,k,a 1 2 8 list 409 36 18 2 2 1 8 list 409 56 14 4 3 4 8 list 409 0 14 0 4 3 8 list 409 12 6 2 5 6 8 list 409 0 14 0 6 5 8 list 409 12 6 2 7 8 8 list 409 0 6 0 8 7 8 list 409 0 4 0 G(Ij,Ka) G(Ij,Ka) i,j,k,a 1 2 8 list 410 84 42 2 2 1 8 list 410 124 31 4 3 4 8 list 410 0 31 0 4 3 8 list 410 48 24 2 5 6 8 list 410 0 31 0 6 5 8 list 410 48 24 2 7 8 8 list 410 0 24 0 8 7 8 list 410 0 13 0 G(AB,IJ) G(AB,IJ) a,b,i,j 1 2 8 list 414 111 1 111 2 1 8 list 414 218 2 109 3 4 8 list 414 198 2 99 4 3 8 list 414 111 1 111 5 6 8 list 414 198 2 99 6 5 8 list 414 111 1 111 7 8 8 list 414 81 1 81 8 7 8 list 414 0 0 99 G(ab,ij) G(ab,ij) a,b,i,j 1 2 8 list 415 126 1 126 2 1 8 list 415 0 0 130 3 4 8 list 415 0 0 116 4 3 8 list 415 0 0 126 5 6 8 list 415 0 0 116 6 5 8 list 415 0 0 126 7 8 8 list 415 0 0 90 8 7 8 list 415 0 0 116 G(Ab,Ij) G(Ab,Ij) a,b,i,j 1 2 8 list 416 948 4 237 2 1 8 list 416 560 2 280 3 4 8 list 416 428 2 214 4 3 8 list 416 0 0 237 5 6 8 list 416 428 2 214 6 5 8 list 416 0 0 237 7 8 8 list 416 0 0 171 8 7 8 list 416 0 0 214 G(aJ,iB) G(aJ,iB) a,j,i,b 1 2 8 list 417 624 39 16 2 1 8 list 417 522 29 18 3 4 8 list 417 174 29 6 4 3 8 list 417 352 22 16 5 6 8 list 417 174 29 6 6 5 8 list 417 352 22 16 7 8 8 list 417 88 22 4 8 7 8 list 417 78 13 6 G(Aj,Ib) G(Aj,Ib) a,j,i,b 1 2 8 list 418 522 18 29 2 1 8 list 418 624 16 39 3 4 8 list 418 352 16 22 4 3 8 list 418 174 6 29 5 6 8 list 418 352 16 22 6 5 8 list 418 174 6 29 7 8 8 list 418 78 6 13 8 7 8 list 418 88 4 22 G(AI,BJ) G(AI,BJ) a,i,b,j 1 2 8 list 423 1131 39 29 2 1 8 list 423 1131 29 39 3 4 8 list 423 638 29 22 4 3 8 list 423 638 22 29 5 6 8 list 423 638 29 22 6 5 8 list 423 638 22 29 7 8 8 list 423 286 22 13 8 7 8 list 423 286 13 22 G(ai,bj) G(ai,bj) a,i,b,j 1 2 8 list 424 288 18 16 2 1 8 list 424 288 16 18 3 4 8 list 424 96 16 6 4 3 8 list 424 96 6 16 5 6 8 list 424 96 16 6 6 5 8 list 424 96 6 16 7 8 8 list 424 24 6 4 8 7 8 list 424 24 4 6 G(Ai,Bj) G(Ai,Bj) a,i,b,j 1 2 8 list 425 252 18 14 2 1 8 list 425 252 14 18 3 4 8 list 425 84 14 6 4 3 8 list 425 84 6 14 5 6 8 list 425 84 14 6 6 5 8 list 425 84 6 14 7 8 8 list 425 24 6 4 8 7 8 list 425 24 4 6 G(aI,bJ) G(aI,bJ) a,i,b,j 1 2 8 list 426 1302 42 31 2 1 8 list 426 1302 31 42 3 4 8 list 426 744 31 24 4 3 8 list 426 744 24 31 5 6 8 list 426 744 31 24 6 5 8 list 426 744 24 31 7 8 8 list 426 312 24 13 8 7 8 list 426 312 13 24 G(AB,CI) G(AB,CI) a,b,c,i 1 2 8 list 427 4329 39 111 2 1 8 list 427 3161 29 109 3 4 8 list 427 2871 29 99 4 3 8 list 427 2442 22 111 5 6 8 list 427 2871 29 99 6 5 8 list 427 2442 22 111 7 8 8 list 427 1782 22 81 8 7 8 list 427 1287 13 99 G(ab,ci) G(ab,ci) a,b,c,i 1 2 8 list 428 2268 18 126 2 1 8 list 428 2080 16 130 3 4 8 list 428 1856 16 116 4 3 8 list 428 756 6 126 5 6 8 list 428 1856 16 116 6 5 8 list 428 756 6 126 7 8 8 list 428 540 6 90 8 7 8 list 428 464 4 116 G(Ab,Ic) G(Ab,Ic) a,b,c,i 1 2 8 list 429 9954 42 237 2 1 8 list 429 8680 31 280 3 4 8 list 429 6634 31 214 4 3 8 list 429 5688 24 237 5 6 8 list 429 6634 31 214 6 5 8 list 429 5688 24 237 7 8 8 list 429 4104 24 171 8 7 8 list 429 2782 13 214 G(Ab,Ci) G(Ab,Ci) a,b,c,i 1 2 8 list 430 4266 18 237 2 1 8 list 430 3920 14 280 3 4 8 list 430 2996 14 214 4 3 8 list 430 1422 6 237 5 6 8 list 430 2996 14 214 6 5 8 list 430 1422 6 237 7 8 8 list 430 1026 6 171 8 7 8 list 430 856 4 214 G(AB,CD) G(AB,CD) a,b,c,d 1 2 8 list 431 12099 109 111 2 1 8 list 431 12099 111 109 3 4 8 list 431 10989 111 99 4 3 8 list 431 10989 99 111 5 6 8 list 431 10989 111 99 6 5 8 list 431 10989 99 111 7 8 8 list 431 8019 99 81 8 7 8 list 431 8019 81 99 G(ab,cd) G(ab,cd) a,b,c,d 1 2 8 list 432 16380 130 126 2 1 8 list 432 16380 126 130 3 4 8 list 432 14616 126 116 4 3 8 list 432 14616 116 126 5 6 8 list 432 14616 126 116 6 5 8 list 432 14616 116 126 7 8 8 list 432 10440 116 90 8 7 8 list 432 10440 90 116 G(Ab,Cd) G(Ab,Cd) a,b,c,d 1 2 8 list 433 66360 280 237 2 1 8 list 433 66360 237 280 3 4 8 list 433 50718 237 214 4 3 8 list 433 50718 214 237 5 6 8 list 433 50718 237 214 6 5 8 list 433 50718 214 237 7 8 8 list 433 36594 214 171 8 7 8 list 433 36594 171 214 D(I,J) D(i,j) PITERM.tmp does not exsit! skip reading Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. @PUTLST-F, Error reading list [ 1,338] Distribution ********* requested, but only 0 are available. @CHECKOUT-I, Total execution time (CPU/WALL): 0.58/ 0.21 seconds. ERROR ERROR ERROR ERROR ERROR ERROR Job has terminated with error flag ERROR ERROR ERROR ERROR ERROR ERROR --executable xsdcc finished with status 1 in 0.26 seconds (walltime). This computation required 88.74 seconds (walltime).