References

  • [1] R. Ahlrichs(2004) Efficient evaluation of three-center two-electron integrals over Gaussian functions. Phys. Chem. Chem. Phys. 6, pp. 5119. Cited by: 1., 2..
  • [2] D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß(1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 77, pp. 123. Cited by: 1..
  • [3] F. Aquilante, T. B. Pedersen, A. M. Sánchez de Merás and H. Koch(2006) Fast noniterative orbital localization for large molecules. J. Chem. Phys. 125, pp. 174101. Cited by: cholesky.
  • [4] A. D. Becke(1988) A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, pp. 2547. Cited by: GS, agrid.
  • [5] A. D. Becke(1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, pp. 3098. Cited by: BLYP, BHLYP, B3LYP, B3LYP3, B3PW91, BP86, B88.
  • [6] A. D. Becke(1993) A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, pp. 1372. Cited by: BHLYP.
  • [7] A. D. Becke(1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, pp. 5648. Cited by: B3LYP, B3LYP3, B3PW91.
  • [8] A. D. Becke(1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107, pp. 8554. Cited by: B97.
  • [9] J. S. Binkley, J. A. Pople and W. J. Hehre(1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, pp. 939. Cited by: 1..
  • [10] A. D. Boese, N. L. Doltsinis, N. C. Handy and M. Sprik(2000) New generalized gradient approximation functionals. J. Chem. Phys. 112, pp. 1670. Cited by: HCTH120, HCTH147.
  • [11] A. D. Boese and N. C. Handy(2001) A new parametriztion of exchange-correlation generalized gradient approximation functionals. J. Chem. Phys. 114, pp. 5497. Cited by: HCTH407.
  • [12] Y. J. Bomble, J. F. Stanton, M. Kállay and J. Gauss(2005) Coupled cluster methods including non-iterative approximate quadruple excitation corrections. J. Chem. Phys. 123, pp. 054101. Cited by: 7., 1.
  • [13] J. W. Boughton and P. Pulay(1993) Comparison of the Boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection. J. Comp. Chem. 14, pp. 736. Cited by: bppdo, bppdv, domrad, bpcompo, bpcompv, bpedo, bpedv.
  • [14] T. Clark, J. Chandrasekhar, G.W. Spitznagel and P. v. R. Schleyer(1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comp. Chem. 4, pp. 294. Cited by: 1..
  • [15] S. Das, M. Kállay and D. Mukherjee(2010) Inclusion of selected higher excitations involving active orbitals in the state-specific multi-reference coupled-cluster theory. J. Chem. Phys. 133, pp. 234110. Cited by: 1.
  • [16] S. Das, M. Kállay and D. Mukherjee(2012) Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals. Chem. Phys. 392, pp. 83. Cited by: 1.
  • [17] S. Das, D. Mukherjee and M. Kállay(2010) Full implementation and benchmark studies of Mukherjee’s state-specific multi-reference coupled-cluster ansatz. J. Chem. Phys. 132, pp. 074103. Cited by: 1.
  • [18] J. D. Dill and J. A. Pople(1975) Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 62, pp. 2921. Cited by: 1..
  • [19] P. A. M. Dirac(1929) Quantum mechanics of many-electron systems. Proc. Roy. Soc. (London) A 123, pp. 714. Cited by: B3LYP, B3LYP3, B3PW91, LDA.
  • [20] T. H. Dunning Jr. and P. J. Hay(1977) Gaussian basis sets for molecular calculations. in H. F. Schaefer III (Ed.), Methods of Electronic Structure Theory, Vol. 2. Cited by: 1..
  • [21] T. H. Dunning Jr.(1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, pp. 1007. Cited by: 1..
  • [22] EMSL basis set exchange, https://bse.pnl.gov/bse/portal.. Cited by: 2., 2., 6.9.
  • [23] D. J. Feller(1996) The role of databases in support of computational chemistry calculations. J. Comp. Chem. 17, pp. 1571. Cited by: 2., 2., 6.9.
  • [24] D. Figgen, K. A. Peterson, M. Dolg and H. Stoll(2009) Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. J. Chem. Phys. 130, pp. 164108. Cited by: 1., 1..
  • [25] D. Figgen, G. Rauhut, M. Dolg and H. Stoll(2005) Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data. Chem. Phys. 311, pp. 227. Cited by: 1..
  • [26] N. Flocke(2009) On the use of shifted Jacobi polynomials in accurate evaluation of roots and weights of Rys polynomials. J. Chem. Phys. 131, pp. 064107. Cited by: rys.
  • [27] J. M. Foster and S. F. Boys(1960) Canonical configurational interaction procedure. Rev. Mod. Phys. 32, pp. 300. Cited by: boys.
  • [28] M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople(1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, pp. 3654. Cited by: 1..
  • [29] Functionals were obtained from the Density Functional Repository as developed and distributed by the Quantum Chemistry Group, CCLRC Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD United Kingdom. contact Huub van Dam (h.j.j.vandam@dl.ac.uk) or Paul Sherwood for further information.. Cited by: 1..
  • [30] J. Gauss, M. Kállay and F. Neese(2009) Calculation of electronic g-tensors using coupled-cluster theory. J. Phys. Chem. A 113, pp. 11541. Cited by: 1., 1, 6.3.
  • [31] J. Gauss, K. Ruud and M. Kállay(2007) Gauge-origin independent calculation of magnetizabilities and rotational gg tensors at the coupled-cluster level. J. Chem. Phys. 127, pp. 074101. Cited by: 1., 1, 6.3.
  • [32] J. Gauss, A. Tajti, M. Kállay, J. F. Stanton and P. G. Szalay(2006) Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory. J. Chem. Phys. 125, pp. 144111. Cited by: 1., 2., 3., 4., 1.
  • [33] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre(1983) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, pp. 2797. Cited by: 1..
  • [34] S. Grimme, J. Antony, S. Ehrlich and H. Krieg(2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, pp. 154104. Cited by: 2., edisp.
  • [35] S. Grimme, S. Ehrlich and L. Goerigk(2011) Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, pp. 1456. Cited by: 2., Note:, edisp.
  • [36] S. Grimme(2003) Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 118, pp. 9095. Cited by: Options:, scsps, scspt.
  • [37] S. Grimme(2006) Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, pp. 034108. Cited by: B2PLYP.
  • [38] A. Grüneis, M. Marsman, J. Harl, L. Schimka and G. Kresse(2009) Making the random phase approximation to electronic correlation accurate. J. Chem. Phys. 131, pp. 154115. External Links: Link, Document Cited by: Options:.
  • [39] P. C. Hariharan and J. A. Pople(1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, pp. 213. Cited by: 1..
  • [40] P. J. Hay and W. R. Wadt(1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, pp. 299. Cited by: 1., 1..
  • [41] P. J. Hay and W. R. Wadt(1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, pp. 270. Cited by: 1., 1..
  • [42] W. J. Hehre, R. Ditchfield and J. A. Pople(1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, pp. 2257. Cited by: 1..
  • [43] G. Hetzer, P. Pulay and H. Werner(1998) Multipole approximation of distant pair energies in local MP2 calculations. Chem. Phys. Lett. 290, pp. 143. Cited by: wpairtol.
  • [44] A. Heßelmann(2012) Random-phase-approximation correlation method including exchange interactions. Phys. Rev. A 85, pp. 012517. Cited by: drpa, Options:, fit, dendec.
  • [45] Y. Jung, R. C. Lochan, A. D. Dutoi and M. Head-Gordon(2004) Scaled opposite-spin second order Møller–Plesset correlation energy: an economical electronic structure method. J. Chem. Phys. 121, pp. 9793. Cited by: Options:, Options:.
  • [46] A. Karton, A. Tarnopolsky, J. Lamere, G. C. Schatz and J. M. L. Martin(2008) Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J. Phys. Chem. A 112 (50), pp. 12868. External Links: Document, Link, http://pubs.acs.org/doi/pdf/10.1021/jp801805p Cited by: B2GPPLYP.
  • [47] M. Kaupp, P. v. R. Schleyer, H. Stoll and H. Preuss(1991) Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX2 compounds bent?. J. Chem. Phys. 94, pp. 1360. Cited by: 1..
  • [48] R. A. Kendall, T. H. Dunning Jr. and R. J. Harrison(1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, pp. 6796. Cited by: 1..
  • [49] H. F. King and M. Dupuis(1976) Numerical integration using Rys polynomials. J. Comput. Phys. 21, pp. 144. Cited by: rys.
  • [50] G. Knizia(2013) Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9, pp. 4834. Cited by: IBO, IAO.
  • [51] W. Kohn and L. J. Sham(1965) Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, pp. A1133. Cited by: LDA.
  • [52] S. Kozuch and J. M. L. Martin(2011) DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys. 13, pp. 20104. Cited by: DSDPBEP86.
  • [53] S. Kozuch and J. M. L. Martin(2013) Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comp. Chem. 34, pp. 2327. Cited by: DSDPBEP86.
  • [54] M. Krack and A. M. Köster(1998) An adaptive numerical integrator for molecular integrals. J. Chem. Phys. 108, pp. 3226. Cited by: GS, Note:, agrid.
  • [55] R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople(1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, pp. 650. Cited by: 1..
  • [56] M. Kállay, J. Gauss and P. G. Szalay(2003) Analytic first derivatives for general coupled-cluster and configuration interaction models. J. Chem. Phys. 119, pp. 2991. Cited by: 1., 2., 1., 2., 3., 4., 1., 2., 3., 4., dens, maxex, 4., 5., 6., 7., 8., 9., 1., 2., 3., 4., 1.
  • [57] M. Kállay and J. Gauss(2004) Analytic second derivatives for general coupled-cluster and configuration interaction models. J. Chem. Phys. 120, pp. 6841. Cited by: 1., 2., 1., 2., 3., 4., dens, 1., 2., 3., 4., 1, 6.3.
  • [58] M. Kállay and J. Gauss(2004) Calculation of excited-state properties using general coupled-cluster and configuration-interaction models. J. Chem. Phys. 121, pp. 9257. Cited by: 1., 2., 3., 4., 10., 11., dens, 8., 9., 1.
  • [59] M. Kállay and J. Gauss(2005) Approximate treatment of higher excitations in coupled-cluster theory. J. Chem. Phys. 123, pp. 214105. Cited by: 7., Options:, Options:, Options:, Options:, Options:, Options:, Options:, 1.
  • [60] M. Kállay and J. Gauss(2006) Calculation of frequency-dependent polarizabilities using general coupled-cluster models. J. Mol. Struct. (Theochem) 768, pp. 71. Cited by: dens, ptfreq, 1., 4., 1, 6.3.
  • [61] M. Kállay and J. Gauss(2008) Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree–Fock case. J. Chem. Phys. 129, pp. 144101. Cited by: 7., Options:, Options:, Options:, Options:, 4., 1, 6.1.
  • [62] M. Kállay, H. S. Nataraj, B. K. Sahoo, B. P. Das and L. Visscher(2011) Relativistic general-order coupled-cluster method for high-precision calculations: application to the Al+{}^{+} atomic clock. Phys. Rev. A 83, pp. 030503(R). Cited by: 3., 1, 5.3.
  • [63] M. Kállay and P. R. Surján(2000) Computing coupled-cluster wave functions with arbitrary excitations. J. Chem. Phys. 113, pp. 1359. Cited by: olsen.
  • [64] M. Kállay and P. R. Surján(2001) Higher excitations in coupled-cluster theory. J. Chem. Phys. 115, pp. 2945. Cited by: 1., 1., 2., 1., 3., 5., 6., Options:, Options:, olsen, nsing, 4., 5., 1., 2., 1.
  • [65] M. Kállay, P. G. Szalay and P. R. Surján(2002) A general state-selective coupled-cluster algorithm. J. Chem. Phys. 117, pp. 980. Cited by: 2., 3., 4., 2., 4., 8., 9., Options:, Options:, maxex, nacto, 6., 7., 3., 4., 1.
  • [66] M. Kállay(2014) A systematic way for the cost reduction of density fitting methods. J. Chem. Phys. 141, pp. 244113. Cited by: 2., 3., 4., drpa, nafalg, naf_cor, naf_scf, naftyp, 2., 3., 1, 6.8.
  • [67] M. Kállay(2015) Linear-scaling implementation of the direct random-phase approximation. J. Chem. Phys. 142, pp. 204105. Cited by: 4., nofit, Note:, spairtol, wpairtol, dendec, drpaalg, lcorthr, localcc, 3., 1, 6.8.
  • [68] C. Lee, W. Yang and R. G. Parr(1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, pp. 785. Cited by: BLYP, BHLYP, B3LYP, B3LYP3, LYP.
  • [69] T. Leininger, A. Nicklass, W. Küchle, H. Stoll, M. Dolg and A. Bergner(1996) The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs). Chem. Phys. Lett. 255, pp. 274. Cited by: 1..
  • [70] R. Lindh, U. Ryu and B. Liu(1991) The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two-electron integral evaluation. J. Chem. Phys. 95, pp. 5889. Cited by: os, rys.
  • [71] F. R. Manby, M. Stella, J. D. Goodpaster and T. F. Miller III(2012) A simple, exact density-functional-theory embedding scheme. J. Chem. Theory Comput. 8, pp. 2564. Cited by: project.
  • [72] I. Mayer(1983) Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, pp. 270. Cited by: Mulli.
  • [73] A. D. McLean and G. S. Chandler(1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 72, pp. 5639. Cited by: 1..
  • [74] D. Mester, J. Csontos and M. Kállay(2015) Unconventional bond functions for quantum chemical calculations. Theor. Chem. Acc. 134, pp. 74. Cited by: bfbasis, 1, 6.9.
  • [75] B. Metz, M. Schweizer, H. Stoll, M. Dolg and W. Liu(2000) A small-core multiconfiguration Dirac–Hartree–Fock-adjusted pseudopotential for Tl – application to TlX (X = F, Cl, Br, I). Theor. Chem. Acc. 104, pp. 22. Cited by: 1..
  • [76] B. Metz, H. Stoll and M. Dolg(2000) Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 113, pp. 2563. Cited by: 1..
  • [77] P. Mezei, G. I. Csonka, A. Ruzsinszky and M. Kállay(2015) Construction and application of a new dual-hybrid random phase approximation. J. Chem. Theory Comput. 11, pp. 4615. Cited by: dRPA75.
  • [78] R. S. Mulliken(1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 23, pp. 1833. Cited by: Mulli.
  • [79] M. E. Mura and P. J. Knowles(1996) Improved radial grids for quadrature in molecular density functional calculations. J. Chem. Phys. 104, pp. 9848. Cited by: Log3.
  • [80] C. W. Murray, N. C. Handy and G. J. Laming(1993) Quadrature schemes for integrals of density functional theory. Mol. Phys. 78, pp. 997. Cited by: EM, agrid.
  • [81] B. H. P. R. Nagy, G. G. Ferenczy and M. Kállay(2016) Exact density functional and wave function embedding schemes based on orbital localization. J. Chem. Phys. 145, pp. submitted. Cited by: 12., 1., huzinaga, 1, 6.8.
  • [82] P. R. Nagy, G. Samu and M. Kállay(2016) An integral-direct linear-scaling second-order Møller–Plesset approach. J. Chem. Theory Comput. , pp. submitted. Cited by: Note:, off, Note:, 2016, Note:, 2, 3, Note:, Note:, wpairtol, wpairtol, excrad, lcorthr, localcc, 3., 1, 6.8.
  • [83] P. Nagy, G. Samu, Z. Rolik and M. Kállay(2016) . J. Chem. Phys. , pp. in preparation. Cited by: 2015, localcc, naftyp, 3., 1, 6.8.
  • [84] H. S. Nataraj, M. Kállay and L. Visscher(2010) General implementation of the relativistic coupled-cluster method. J. Chem. Phys. 133, pp. 234109. Cited by: 3., 2., 1, 5.3.
  • [85] J. A. Nelder and R. Mead(1965) A simplex method for function minimization. Comput. J. 7, pp. 308. Cited by: optalg.
  • [86] P. Neogrády, M. Pitoňák and M. Urban(2005) Optimized virtual orbitals for correlated calculations: an alternative approach. Mol. Phys. 103, pp. 2141. Cited by: ovirt.
  • [87] S. Obara and A. Saika(1986) Efficient recursive computation of molecular integrals over Cartesian Gaussian functions. J. Chem. Phys. 84, pp. 3963. Cited by: os.
  • [88] J. Olsen, P. Jørgensen and J. Simons(1990) Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 169, pp. 463. Cited by: olsen.
  • [89] D. P. O’Neill, M. Kállay and J. Gauss(2007) Analytic evaluation of Raman intensities in coupled-cluster theory. Mol. Phys. 105, pp. 2447. Cited by: 1., 2., 1., dens, 1.
  • [90] D. P. O’Neill, M. Kállay and J. Gauss(2007) Calculation of frequency-dependent hyperpolarizabilities using general coupled-cluster models. J. Chem. Phys. 127, pp. 134109. Cited by: 1., 2., 1., dens, ptfreq, 1.
  • [91] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singha and C. Fiolhais(1992) Atoms, molecules, solids and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, pp. 6671. Cited by: PW91c, B3PW91, PW91, PW91x.
  • [92] J. P. Perdew and Y. Wang(1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, pp. 13244. Cited by: PW.
  • [93] J. P. Perdew, K. Burke and M. Ernzerhof(1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77, pp. 3865. Cited by: PBEc, PBE, PBE0, PBEx.
  • [94] J. P. Perdew, M. Ernzerhof and K. Burke(1996) Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, pp. 9982. Cited by: PBE0.
  • [95] J. P. Perdew(1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, pp. 8822. Cited by: P86, BP86.
  • [96] K. A. Peterson, B. C. Shepler, D. Figgen and H. Stoll(2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 110, pp. 13877. Cited by: 1..
  • [97] K. A. Peterson and C. Puzzarini(2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 114, pp. 283. Cited by: 1..
  • [98] K. A. Peterson, T. B. Adler and H. Werner(2008) Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar. J. Chem. Phys. 128, pp. 084102. Cited by: 1..
  • [99] K. A. Peterson and T. H. Dunning Jr.(2002) Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al-Ar, and the first row atoms B-Ne revisited. J. Chem. Phys. 117, pp. 10548. Cited by: 1..
  • [100] K. A. Peterson, D. Figgen, M. Dolg and H. Stoll(2007) Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. J. Chem. Phys. 126, pp. 124101. Cited by: 1., 1..
  • [101] K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg(2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 119, pp. 11113. Cited by: 1., 1..
  • [102] K. A. Peterson(2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements. J. Chem. Phys. 119, pp. 11099. Cited by: 1..
  • [103] P. Pinski, C. Riplinger, E. F. Valeev and F. Neese(2015) Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 143, pp. 034108. Cited by: 1.
  • [104] J. Pipek and P. Mezey(1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90, pp. 4916. Cited by: pm.
  • [105] R. Polly, H. Werner, F. R. Manby and P. J. Knowles(2004) Fast Hartree–Fock theory using local fitting approximations. Mol. Phys. 102, pp. 2311. Cited by: excrad.
  • [106] S. Reine, E. Tellgren and T. Helgaker(2007) A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians. Phys. Chem. Chem. Phys. 9, pp. 4771. Cited by: 2., herm.
  • [107] C. Riplinger and F. Neese(2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, pp. 034106. Cited by: Options:, wpairtol.
  • [108] Z. Rolik and M. Kállay(2011) A general-order local coupled-cluster method based on the cluster-in-molecule approach. J. Chem. Phys. 135, pp. 104111. Cited by: Note:, off, 1., lmp2dens, localcc, 3., 1, 6.8.
  • [109] Z. Rolik and M. Kállay(2011) Cost-reduction of high-order coupled-cluster methods via active-space and orbital transformation techniques. J. Chem. Phys. 134, pp. 124111. Cited by: eps, ovirt, 2., 1, 6.8.
  • [110] Z. Rolik and M. Kállay(2014) A quasiparticle-based multireference coupled-cluster method. J. Chem. Phys. 141, pp. 134112. Cited by: 1.
  • [111] Z. Rolik, L. Szegedy, I. Ladjánszki, B. Ladóczki and M. Kállay(2013) An efficient linear-scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys. 139, pp. 094105. Cited by: 1., 2013, lnoepso, lnoepsv, localcc, 3., 1., 1, 6.8.
  • [112] G. Schaftenaar and J. H. Noordik(2000) Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput.-Aided Mol. Design 14, pp. 123. Cited by: 14.1.
  • [113] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus(2007) Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47, pp. 1045. Cited by: 2., 2., 6.9.
  • [114] J. Sikkema, L. Visscher, T. Saue and M. Iliaš(2009) The molecular mean-field approach for correlated relativistic calculations. J. Chem. Phys. 131, pp. 124116. Cited by: X2Cmmf.
  • [115] J. C. Slater(1951) A simplification of the Hartree–Fock method. Phys. Rev. 81, pp. 385. Cited by: B3LYP, B3LYP3, B3PW91, LDA.
  • [116] P. J. Stephens, F. J. Devlin and M. J. F. C. F. Chabalowski(1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, pp. 11623. Cited by: B3LYP3.
  • [117] R. Strange, F. R. Manby and P. J. Knowles(2001) Automatic code generation in density functional theory. Comp. Phys. Comm. 136, pp. 310. Cited by: 1..
  • [118] A. Takatsuka, S. Ten-no and W. Hackbusch(2008) Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller–Plesset perturbation theories. J. Chem. Phys. 129, pp. 044112. Cited by: 1., 2..
  • [119] J. Toulouse, W. Zhu, A. Savin, G. Jansen and J. G. Ángyán(2011) Closed-shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions. J. Chem. Phys. 135, pp. 084119. Cited by: Options:, Options:, Options:.
  • [120] S. H. Vosko, L. Wilk and M. Nusair(1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, pp. 1200. Cited by: B3LYP, B3LYP3, B3PW91, VWN5.
  • [121] W. R. Wadt and P. J. Hay(1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, pp. 284. Cited by: 1., 1..
  • [122] F. Weigend and R. Ahlrichs(2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy integrals over Gaussian functions. Phys. Chem. Chem. Phys. 7, pp. 3297. Cited by: 1., 1..
  • [123] F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs(1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, pp. 143. Cited by: 1..
  • [124] F. Weigend, A. Köhn and C. Hättig(2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 116, pp. 3175. Cited by: 1..
  • [125] F. Weigend(2008) Hartree–Fock exchange fitting basis sets for H to Rn. J. Comp. Chem. 29, pp. 167. Cited by: 1..
  • [126] D. E. Woon and T. H. Dunning Jr.(1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, pp. 1358. Cited by: 1..
  • [127] D. E. Woon and T. H. Dunning Jr.(1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 103, pp. 4572. Cited by: 1..